Grey wolf optimizer (GWO) is a nature-inspired stochastic meta-heuristic of the swarm intelligence field that mimics the hunting behavior of grey wolves. Differential evolution (DE) is a popular stochastic algorithm of the evolutionary computation field that is well suited for global optimization. In this part, we introduce a new algorithm based on the hybridization of GWO and two DE variants, namely the GWO-DE algorithm. We evaluate the new algorithm by applying various numerical benchmark functions. The numerical results of the comparative study are quite satisfactory in terms of performance and solution quality.
翻译:暂无翻译