To reduce Operation and Maintenance (O&M) costs on offshore wind farms, wherein 80% of the O&M cost relates to deploying personnel, the offshore wind sector looks to robotics and Artificial Intelligence (AI) for solutions. Barriers to Beyond Visual Line of Sight (BVLOS) robotics include operational safety compliance and resilience, inhibiting the commercialization of autonomous services offshore. To address safety and resilience challenges we propose a symbiotic system; reflecting the lifecycle learning and co-evolution with knowledge sharing for mutual gain of robotic platforms and remote human operators. Our methodology enables the run-time verification of safety, reliability and resilience during autonomous missions. We synchronize digital models of the robot, environment and infrastructure and integrate front-end analytics and bidirectional communication for autonomous adaptive mission planning and situation reporting to a remote operator. A reliability ontology for the deployed robot, based on our holistic hierarchical-relational model, supports computationally efficient platform data analysis. We analyze the mission status and diagnostics of critical sub-systems within the robot to provide automatic updates to our run-time reliability ontology, enabling faults to be translated into failure modes for decision making during the mission. We demonstrate an asset inspection mission within a confined space and employ millimeter-wave sensing to enhance situational awareness to detect the presence of obscured personnel to mitigate risk. Our results demonstrate a symbiotic system provides an enhanced resilience capability to BVLOS missions. A symbiotic system addresses the operational challenges and reprioritization of autonomous mission objectives. This advances the technology required to achieve fully trustworthy autonomous systems.
翻译:为了降低离岸风力农场的运行和维护(O&M)成本(O&M),其中80%的运行和维护成本与部署人员有关,离岸风力部门期待机器人和人工智能(AI)解决机器人和人工智能(AI)问题。超越视觉视线(BVLOS)的机器人障碍包括操作安全合规和复原力,这妨碍了离岸自主服务的商业化。为了应对安全和复原力挑战,我们提议了一个共生系统;反映生命周期学习和共同变化,共享知识共享,以便机器人平台和远程人类操作者相互受益。我们的方法使得在自主任务期间能够对安全、可靠性和复原力进行实时核查。我们同步了机器人、环境和基础设施的自主数字模型,并整合了前端分析器和双向通信,以自主适应飞行任务规划和向远程操作者报告情况。我们基于整体等级关系模型的部署机器人的可靠性支持计算高效的平台数据分析。我们分析了机器人内部关键子系统的任务状况和诊断,以便自动更新我们运行时的可靠性、可靠性、可靠性和复原力。我们同步的机器人自动更新了机器人的自动数字模型模型,使得一个稳定的智能分析任务定位能力能够完全转换成一个在飞行任务内的系统,从而测量测量测量飞行任务的系统,从而显示一个稳定的定位,从而测量任务中测试一个测试一个测试一个测试结果,从而显示一个测试一个测试一个测试一个系统在飞行任务的系统,从而显示一个测试一个测试一个稳定的系统在飞行任务的系统在飞行任务的失败失败到一个测试到一个测试到一个测量到一个测量到一个测量到一个测试到一个测试的系统,以失败。