Reliable localization is crucial for autonomous robots to navigate efficiently and safely. Some navigation methods can plan paths with high localizability (which describes the capability of acquiring reliable localization). By following these paths, the robot can access the sensor streams that facilitate more accurate location estimation results by the localization algorithms. However, most of these methods require prior knowledge and struggle to adapt to unseen scenarios or dynamic changes. To overcome these limitations, we propose a novel approach for localizability-enhanced navigation via deep reinforcement learning in dynamic human environments. Our proposed planner automatically extracts geometric features from 2D laser data that are helpful for localization. The planner learns to assign different importance to the geometric features and encourages the robot to navigate through areas that are helpful for laser localization. To facilitate the learning of the planner, we suggest two techniques: (1) an augmented state representation that considers the dynamic changes and the confidence of the localization results, which provides more information and allows the robot to make better decisions, (2) a reward metric that is capable to offer both sparse and dense feedback on behaviors that affect localization accuracy. Our method exhibits significant improvements in lost rate and arrival rate when tested in previously unseen environments.


翻译:可靠的定位对于自主机器人进行高效和安全的导航至关重要。一些导航方法可以规划具有较高定位能力的路径(描述能够获得可靠定位的能力)。通过遵循这些路径,机器人可以访问传感器流,从而实现更准确的位置估计结果。然而,大多数这些方法需要先前的知识,并且很难适应未见过的场景或动态变化。为了克服这些限制,我们提出了一种基于深度强化学习技术的新方法,以增强动态人类环境下的可定位性导航。我们提出的规划器自动从2D激光数据中提取几何特征,有助于定位。规划器学习为不同的几何特征分派不同的重要性,并鼓励机器人在有助于激光定位的区域中导航。为了便于规划器的学习,我们建议采用两种技术:(1)一种增强状态表示,考虑到动态变化和定位结果的置信度,提供更多信息,使机器人能够做出更好的决策;(2)一种奖励指标,能够对影响定位精度的行为提供稀疏和密集的反馈。我们的方法在之前未见过的环境中进行测试,表现出显著的失误率和到达率的改进。

0
下载
关闭预览

相关内容

《行为与认知机器人学》,241页pdf
专知会员服务
52+阅读 · 2021年4月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
43+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
19+阅读 · 2022年11月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
43+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员