Agentic Workflows (AWs) have emerged as a promising paradigm for solving complex tasks. However, the scalability of automating their generation is severely constrained by the high cost and latency of execution-based evaluation. Existing AW performance prediction methods act as surrogates but fail to simultaneously capture the intricate topological dependencies and the deep semantic logic embedded in AWs. To address this limitation, we propose GLOW, a unified framework for AW performance prediction that combines the graph-structure modeling capabilities of GNNs with the reasoning power of LLMs. Specifically, we introduce a graph-oriented LLM, instruction-tuned on graph tasks, to extract topologically aware semantic features, which are fused with GNN-encoded structural representations. A contrastive alignment strategy further refines the latent space to distinguish high-quality AWs. Extensive experiments on FLORA-Bench show that GLOW outperforms state-of-the-art baselines in prediction accuracy and ranking utility.


翻译:智能体工作流已成为解决复杂任务的一种有前景的范式。然而,基于执行的评估方法成本高昂且延迟显著,严重制约了其自动化生成的可扩展性。现有的智能体工作流性能预测方法虽可作为替代方案,但未能同时捕捉工作流中复杂的拓扑依赖关系和深层的语义逻辑。为克服这一局限,我们提出了GLOW,一个统一的智能体工作流性能预测框架,该框架结合了图神经网络在图结构建模方面的能力与大语言模型的推理能力。具体而言,我们引入了一种面向图结构的大语言模型,通过在图形任务上进行指令微调,以提取具有拓扑感知的语义特征,并与图神经网络编码的结构表示进行融合。进一步采用对比对齐策略优化潜在空间,以区分高质量的智能体工作流。在FLORA-Bench上的大量实验表明,GLOW在预测准确性和排序效用方面均优于现有最先进的基线方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员