Urban noise pollution poses a significant threat to public health, yet existing monitoring infrastructures offer limited spatial coverage and adaptability. This paper presents a scalable, low-cost, IoT-based, real-time environmental noise monitoring solution using mobile nodes (sensor nodes on a moving vehicle). The system utilizes a low-cost sound sensor integrated with GPS-enabled modules to collect geotagged noise data at one-second intervals. The sound nodes are calibrated against a reference sound level meter in a laboratory setting to ensure accuracy using various machine learning (ML) algorithms, such as Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Polynomial Regression (PR), Segmented Regression (SR), Support Vector Regression (SVR), Decision Tree (DT), and Random Forest Regression (RFR). While laboratory calibration demonstrates high accuracy, it is shown that the performance of the nodes degrades during data collection in a moving vehicle. To address this, it is demonstrated that the calibration must be performed on the IoT-based node based on the data collected in a moving environment along with the reference device. Among the employed ML models, RFR achieved the best performance with an R2 of 0.937 and RMSE of 1.09 for mobile calibration. The system was deployed in Hyderabad, India, through three measurement campaigns across 27 days, capturing 436,420 data points. Results highlight temporal and spatial noise variations across weekdays, weekends, and during Diwali. Incorporating vehicular velocity into the calibration significantly improves accuracy. The proposed system demonstrates the potential for widespread deployment of IoT-based noise sensing networks in smart cities, enabling effective noise pollution management and urban planning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员