Many large-scale stochastic optimization algorithms involve repeated solutions of linear systems or evaluations of log-determinants. In these regimes, computing exact solutions is often unnecessary; it is more computationally efficient to construct unbiased stochastic estimators with controlled variance. However, classical iterative solvers incur truncation bias, whereas unbiased Krylov-based estimators typically exhibit high variance and numerical instability. To mitigate these issues, we introduce the Preconditioned Truncated Single-Sample (PTSS) estimators--a family of stochastic Krylov methods that integrate preconditioning with truncated Lanczos iterations. PTSS yields low-variance, stable estimators for linear system solutions, log-determinants, and their derivatives. We establish theoretical results on their mean, variance, and concentration properties, explicitly quantifying the variance reduction induced by preconditioning. Numerical experiments confirm that PTSS achieves superior stability and variance control compared with existing unbiased and biased alternatives, providing an efficient framework for stochastic optimization.


翻译:许多大规模随机优化算法涉及线性系统的重复求解或对数行列式的评估。在这些场景中,计算精确解通常并非必要;构建具有可控方差的无偏随机估计器在计算上更为高效。然而,经典迭代求解器会引入截断偏差,而无偏的基于Krylov的估计器通常表现出高方差和数值不稳定性。为缓解这些问题,我们提出了预条件截断单样本(PTSS)估计器——一类将预条件技术与截断Lanczos迭代相结合随机Krylov方法。PTSS为线性系统解、对数行列式及其导数提供了低方差、稳定的估计器。我们建立了关于其均值、方差和集中性质的理论结果,明确量化了预条件技术引起的方差缩减。数值实验证实,与现有的无偏和有偏替代方法相比,PTSS在稳定性和方差控制方面表现更优,为随机优化提供了一个高效框架。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员