As machine learning (ML) systems are increasingly adopted in high-stakes decision-making domains, ensuring fairness in their outputs has become a central challenge. At the core of fair ML research are the datasets used to investigate bias and develop mitigation strategies. Yet, much of the existing work relies on a narrow selection of datasets--often arbitrarily chosen, inconsistently processed, and lacking in diversity--undermining the generalizability and reproducibility of results. To address these limitations, we present FairGround: a unified framework, data corpus, and Python package aimed at advancing reproducible research and critical data studies in fair ML classification. FairGround currently comprises 44 tabular datasets, each annotated with rich fairness-relevant metadata. Our accompanying Python package standardizes dataset loading, preprocessing, transformation, and splitting, streamlining experimental workflows. By providing a diverse and well-documented dataset corpus along with robust tooling, FairGround enables the development of fairer, more reliable, and more reproducible ML models. All resources are publicly available to support open and collaborative research.
翻译:随着机器学习系统越来越多地应用于高风险决策领域,确保其输出的公平性已成为核心挑战。公平机器学习研究的核心在于用于探究偏见和开发缓解策略的数据集。然而,现有研究大多依赖于一小部分数据集——这些数据集往往被任意选择、处理方式不一致且缺乏多样性——从而削弱了结果的普适性和可复现性。为应对这些局限,我们提出了FairGround:一个旨在推动公平机器学习分类中可复现研究与关键数据研究的统一框架、数据语料库及Python软件包。FairGround目前包含44个表格数据集,每个数据集均标注了丰富的与公平性相关的元数据。我们配套的Python软件包标准化了数据集的加载、预处理、转换与划分,从而简化了实验工作流程。通过提供一个多样化、文档完备的数据语料库以及稳健的工具,FairGround支持开发更公平、更可靠且更具可复现性的机器学习模型。所有资源均已公开,以支持开放与合作研究。