Given two points s and t in the plane and a set of obstacles defined by closed curves, what is the minimum number of obstacles touched by a path connecting s and t? This is a fundamental and well-studied problem arising naturally in computational geometry, graph theory (under the names Min-Color Path and Minimum Label Path), wireless sensor networks (Barrier Resilience) and motion planning (Minimum Constraint Removal). It remains NP-hard even for very simple-shaped obstacles such as unit-length line segments. In this paper we give the first constant factor approximation algorithm for this problem, resolving an open problem of [Chan and Kirkpatrick, TCS, 2014] and [Bandyapadhyay et al., CGTA, 2020]. We also obtain a constant factor approximation for the Minimum Color Prize Collecting Steiner Forest where the goal is to connect multiple request pairs (s1, t1), . . . ,(sk, tk) while minimizing the number of obstacles touched by any (si, ti) path plus a fixed cost of wi for each pair (si, ti) left disconnected. This generalizes the classic Steiner Forest and Prize-Collecting Steiner Forest problems on planar graphs, for which intricate PTASes are known. In contrast, no PTAS is possible for Min-Color Path even on planar graphs since the problem is known to be APXhard [Eiben and Kanj, TALG, 2020]. Additionally, we show that generalizations of the problem to disconnected obstacles


翻译:考虑到平面上的两点和t, 以及一组封闭曲线定义的障碍, 最起码有多少障碍是连接一条道路的最起码的障碍? 这是一个根本性的、研究周密的问题, 这些问题自然地出现在计算几何、 图形理论(以Min- Color Path 和最小标签路径为名)、 无线传感器网络( 恢复能力) 和运动规划( 最小限制清除 ) 。 即使对于非常简单的构型障碍, 如单长线段 。 在本文中, 我们给出了这一问题的第一个常态要素近似算法, 解决了[ Chan和Kirkpatrick, TCS, 2014] 和 [ Bandyapapadhyay 等人, CGTA, 2020] 的开放问题。 我们还得到了一个固定的系数近似值, 收集 Steiner Forest( 森林) 最低彩色奖, 目标是将多个需求配对( s1, t1, )........ AP (sk, tk) 将任何(i) 直径) 路径所碰到障碍障碍的我们所知道的路径障碍数 加上平面的平面的平面的平面图 。

0
下载
关闭预览

相关内容

【Manning新书】C++并行实战,592页pdf,C++ Concurrency in Action
专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
Science 一周论文导读 | 2019 年 4 月 12 日
科研圈
14+阅读 · 2019年4月21日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
0+阅读 · 2021年1月17日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
VIP会员
相关资讯
Science 一周论文导读 | 2019 年 4 月 12 日
科研圈
14+阅读 · 2019年4月21日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员