Conservation and consistency are fundamental properties of discretizations of systems of hyperbolic conservation laws. Here, these concepts are extended to the realm of iterative methods by formally defining locally conservative and flux consistent iterations. These concepts are of both theoretical and practical importance: Based on recent work by the authors, it is shown that pseudo-time iterations using explicit Runge-Kutta methods are locally conservative but not necessarily flux consistent. An extension of the Lax-Wendroff theorem is presented, revealing convergence towards weak solutions of a temporally retarded system of conservation laws. Each equation is modified in the same way, namely by a particular scalar factor multiplying the spatial flux terms. A technique for enforcing flux consistency, and thereby recovering convergence, is presented. Further, local conservation is established for all Krylov subspace methods, with and without restarts, and for Newton's method under certain assumptions on the discretization. Thus it is shown that Newton-Krylov methods are locally conservative, although not necessarily flux consistent. Numerical experiments with the 2D compressible Euler equations corroborate the theoretical results. Further numerical investigations of the impact of flux consistency on Newton-Krylov methods indicate that its effect is case dependent, and diminishes as the number of iterations grow.


翻译:保存和一致性是双曲保护法系统离散的基本特性。 这里, 这些概念通过正式定义本地保守和通量一致的迭代法, 扩展至迭代方法领域。 这些概念具有理论和实践重要性: 根据作者最近的工作, 显示使用明确的龙格- 库塔方法的假时间迭代在本地是保守的, 但不一定是通量的一致。 Lax- Wendroff 定理的延伸显示, 向暂时缓冲的保护法体系的薄弱解决方案的趋同。 每个等式都以同样的方式修改, 即用一个特定的变异系数乘以空间通量条件。 提出了一种执行通量一致性的方法, 从而恢复趋同。 此外, 对所有 Krylov 子空间方法, 使用或不重新启用, 以及 牛顿 方法在离散化的某些假设下, 都建立了本地保护。 因此, 牛顿- 克利夫定定律方法是本地保守的, 虽然不一定通融。 数值实验与 2D 硬度 Euler 等方公式的数值实验以证实理论结果。 进一步的数值调查显示, 牛顿 增长 的一致性研究显示, 的趋同性 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月8日
Arxiv
0+阅读 · 2022年8月8日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员