Understanding and quantifying cause and effect is an important problem in many domains. The generally-agreed solution to this problem is to perform a randomised controlled trial. However, even when randomised controlled trials can be performed, they usually have relatively short duration's due to cost considerations. This makes learning long-term causal effects a very challenging task in practice, since the long-term outcome is only observed after a long delay. In this paper, we study the identification and estimation of long-term treatment effects when both experimental and observational data are available. Previous work provided an estimation strategy to determine long-term causal effects from such data regimes. However, this strategy only works if one assumes there are no unobserved confounders in the observational data. In this paper, we specifically address the challenging case where unmeasured confounders are present in the observational data. Our long-term causal effect estimator is obtained by combining regression residuals with short-term experimental outcomes in a specific manner to create an instrumental variable, which is then used to quantify the long-term causal effect through instrumental variable regression. We prove this estimator is unbiased, and analytically study its variance. In the context of the front-door causal structure, this provides a new causal estimator, which may be of independent interest. Finally, we empirically test our approach on synthetic-data, as well as real-data from the International Stroke Trial.


翻译:理解和量化原因及影响是许多领域的一个重要问题。 这一问题的公认解决办法是随机控制试验。 但是,即使随机控制试验可以进行,由于成本因素,它们通常也具有相对较短的时间期限。 这使得学习长期因果关系在实践中是一项非常艰巨的任务,因为长期结果只有在长期拖延后才观察到。 在本文件中,我们研究当实验和观察数据都存在时,确定和估计长期治疗效果的问题。 以往的工作提供了估计战略,以确定这类数据制度的长期因果关系。 但是,这一战略只有在假设观察数据中没有不可避免的共鸣者时才能奏效。 在本文中,我们专门处理一个具有挑战性的案件,即观察数据中存在非计量的共鸣者。我们的长期因果关系估计是通过将回归残余与短期实验结果相结合,以具体的方式创建一种工具变量,然后用来量化这类数据制度的长期因果关系。 我们证明这一估计数据是真实的,分析性的,我们作为先期的统计结果,最终的检验结果,我们作为结果的检验结果,我们作为最后的先期统计结果,我们作为结果分析结果,可以用来量化。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
14+阅读 · 2021年6月27日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员