Besides per-pixel accuracy, topological correctness is also crucial for the segmentation of images with fine-scale structures, e.g., satellite images and biomedical images. In this paper, by leveraging the theory of digital topology, we identify locations in an image that are critical for topology. By focusing on these critical locations, we propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy. To efficiently identity these topologically critical locations, we propose a new algorithm exploiting the distance transform. The proposed algorithm, as well as the loss function, naturally generalize to different topological structures in both 2D and 3D settings. The proposed loss function helps deep nets achieve better performance in terms of topology-aware metrics, outperforming state-of-the-art topology-preserving segmentation methods.


翻译:除了每像素准确度外,地形正确性对于使用微小结构(如卫星图像和生物医学图像)对图像进行分解也至关重要。在本文中,通过利用数字地形学理论,我们确定了对地形学至关重要的图像中的位置。通过关注这些关键位置,我们提议了一种新的同质扭曲损失,以训练深层图像分解网络,提高地形精确度。为了有效地识别这些在地形上至关重要的地点,我们提出了利用距离变异的新算法。拟议的算法以及损失函数,自然地将2D和3D环境的不同地形结构概括化。拟议的损失函数有助于深海网在地表学认知度测量、超过最新地形分解方法方面实现更好的性能。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【Manning新书】Kafka实战,272页pdf,Kafka in Action
专知会员服务
62+阅读 · 2022年1月30日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年9月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【Keras】基于SegNet和U-Net的遥感图像语义分割
数据挖掘入门与实战
3+阅读 · 2018年4月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Keras】基于SegNet和U-Net的遥感图像语义分割
全球人工智能
11+阅读 · 2018年1月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Synthetic data for unsupervised polyp segmentation
Arxiv
0+阅读 · 2022年2月17日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【Keras】基于SegNet和U-Net的遥感图像语义分割
数据挖掘入门与实战
3+阅读 · 2018年4月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Keras】基于SegNet和U-Net的遥感图像语义分割
全球人工智能
11+阅读 · 2018年1月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员