We present an efficient, elastic 3D LiDAR reconstruction framework which can reconstruct up to maximum LiDAR ranges (60 m) at multiple frames per second, thus enabling robot exploration in large-scale environments. Our approach only requires a CPU. We focus on three main challenges of large-scale reconstruction: integration of long-range LiDAR scans at high frequency, the capacity to deform the reconstruction after loop closures are detected, and scalability for long-duration exploration. Our system extends upon a state-of-the-art efficient RGB-D volumetric reconstruction technique, called supereight, to support LiDAR scans and a newly developed submapping technique to allow for dynamic correction of the 3D reconstruction. We then introduce a novel pose graph sparsification and submap fusion feature to make our system more scalable for large environments. We evaluate the performance using a published dataset captured by a handheld mapping device scanning a set of buildings, and with a mobile robot exploring an underground room network. Experimental results demonstrate that our system can reconstruct at 3 Hz with 60 m sensor range and ~5 cm resolution, while state-of-the-art approaches can only reconstruct to 25 cm resolution or 20 m range at the same frequency.
翻译:我们提出了一个高效、弹性的3D LiDAR重建框架,它可以在每秒的多个框架(60米)中重建最大liDAR范围(60米),从而在大型环境中进行机器人探索。我们的方法只需要一个CPU。我们侧重于大规模重建的三大挑战:高频率长距离LIDAR扫描集成,探测到环闭合后进行变形的能力,以及长期勘探的可缩放性。我们的系统延伸至最先进的高效RGB-D体积重建技术,称为超8,以支持LIDAR扫描和新开发的子绘图技术,以便能够动态地校正3D重建。我们随后引入了一个新的合成图的粉刷和子成形聚变异功能,以使我们的系统在大环境中更可伸缩。我们用一个扫描一套建筑物的手持式绘图设备所捕捉到的已公布的数据集,用移动机器人探索地下房间网络。实验结果显示,我们的系统可以在3Hz进行重建,只有60米传感器和~5厘米分辨率,同时进行25米分辨率的状态重建。