Volatility estimation is a central problem in financial econometrics, but becomes particularly challenging when jump activity is high, a phenomenon observed empirically in highly traded financial securities. In this paper, we revisit the problem of spot volatility estimation for an It\^o semimartingale with jumps of unbounded variation. We construct truncated kernel-based estimators and debiased variants that extend the efficiency frontier for spot volatility estimation in terms of the jump activity index $Y$, raising the previous bound $Y<4/3$ to $Y<20/11$, thereby covering nearly the entire admissible range $Y<2$. Compared with earlier work, our approach attains smaller asymptotic variances through the use of unbounded kernels, is simpler to implement, and has broader applicability under more flexible model assumptions. A comprehensive simulation study confirms that our procedures substantially outperform competing methods in finite samples.
翻译:暂无翻译