Global existence of strong solutions to the three-dimensional incompressible Navier-Stokes equations remains an open problem. A posteriori existence results offer a way to rigorously verify the existence of strong solutions by ruling out blow-up on a certain time interval, using only numerical solutions. In this work we present such a result for the Navier-Stokes equations subject to periodic boundary conditions, which makes use of a version of the celebrated blow-up criterion in the critical space $L^\infty(L^3)$ by Iskauriaza, Ser\"egin and Shverak (2003). Our approach is based on a conditional stability estimate in $L^2$ and $L^3$. The a posteriori criterion that, if satisfied, verifies existence of strong solutions, involves only negative Sobolev norms of the residual. We apply the criterion to numerical approximations computed with mixed finite elements and an implicit Euler time discretisation. A posteriori error estimates allow us to derive a fully computable criterion without imposing any extra assumptions on the solution. While limited to short time intervals, with sufficient computational resources in principle the criterion might allow for a verification over longer time intervals than what can be achieved by theoretical means.
翻译:暂无翻译