We propose a micro-macro parallel-in-time Parareal method for scalar McKean-Vlasov stochastic differential equations (SDEs). In the algorithm, the fine Parareal propagator is a Monte Carlo simulation of an ensemble of particles, while an approximate ordinary differential equation (ODE) description of the mean and the variance of the particle distribution is used as a coarse Parareal propagator to achieve speedup. We analyse the convergence behaviour of our method for a linear problem and provide numerical experiments indicating the parallel weak scaling of the algorithm on a set of examples. We show, with numerical experiments, that convergence typically takes place in a low number of iterations, depending on the quality of the ODE predictor. For bimodal SDEs, we avoid quality deterioration of the coarse predictor (compared to unimodal SDEs) through the usage of multiple ODEs, each describing the mean and variance of the particle distribution in locally unimodal regions of the phase space. The benefit of the proposed algorithm can be viewed through two lenses: (i) through the parallel-in-time lens, speedup is obtained through the use of a very cheap coarse integrator (an ODE moment model), and (ii) through the moment models lens, accuracy is iteratively gained through the use of parallel machinery as a corrector. In contrast to the isolated use of a moment model, the proposed method (iteratively) converges to the true distribution generated by the SDE.


翻译:本文提出了一种用于标量McKean-Vlasov随机微分方程(SDEs)的微宏观并行时间Parareal方法。在该算法中,精细Parareal传播子采用粒子系统的蒙特卡洛模拟,而利用粒子分布均值和方差的近似常微分方程(ODE)描述作为粗糙Parareal传播子以实现加速。我们针对线性问题分析了该方法的收敛行为,并通过数值实验展示算法在一系列示例上的并行弱扩展性。数值实验表明,收敛通常在较少迭代次数内实现,具体取决于ODE预测器的质量。对于双峰SDEs,我们通过采用多个ODE(每个ODE描述相空间局部单峰区域内粒子分布的均值和方差)避免了粗糙预测器质量下降(相较于单峰SDEs)。所提算法的优势可从两个视角理解:(i)从并行时间视角看,通过使用极低成本的粗糙积分器(ODE矩量模型)获得加速;(ii)从矩量模型视角看,通过并行校正机制迭代提升精度。与孤立使用矩量模型相比,所提方法能够(迭代)收敛至SDE生成的真实分布。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员