Relation prediction on knowledge graphs (KGs) is a key research topic. Dominant embedding-based methods mainly focus on the transductive setting and lack the inductive ability to generalize to new entities for inference. Existing methods for inductive reasoning mostly mine the connections between entities, i.e., relational paths, without considering the nature of head and tail entities contained in the relational context. This paper proposes a novel method that captures both connections between entities and the intrinsic nature of entities, by simultaneously aggregating RElational Paths and cOntext with a unified hieRarchical Transformer framework, namely REPORT. REPORT relies solely on relation semantics and can naturally generalize to the fully-inductive setting, where KGs for training and inference have no common entities. In the experiments, REPORT performs consistently better than all baselines on almost all the eight version subsets of two fully-inductive datasets. Moreover. REPORT is interpretable by providing each element's contribution to the prediction results.


翻译:在知识图谱上进行关系预测是一个关键的研究课题。主流的基于嵌入的方法主要针对传导设置,并缺乏归纳能力,无法推广到新实体以进行推理。现有的归纳推理方法主要通过挖掘实体之间的连接(即关系路径),而不考虑包含在关系上下文中的头实体和尾实体的性质。本文提出了一种新的方法,通过统一的层次Transformer框架,同时聚合关系路径和上下文,捕捉实体之间的连接和实体本质的特性,即REPORT。REPORT仅依赖于关系语义,并能自然地推广到完全归纳的设置,其中训练和推理的知识图谱没有共同实体。在实验中,REPORT在两个完全归纳数据集的八个版本子集中几乎总是优于所有基线。此外,REPORT是可解释的,它提供了每个元素对预测结果的贡献。

1
下载
关闭预览

相关内容

实体(entity)是有可区别性且独立存在的某种事物,但它不需要是物质上的存在。尤其是抽象和法律拟制也通常被视为实体。实体可被看成是一包含有子集的集合。在哲学里,这种集合被称为客体。实体可被使用来指涉某个可能是人、动物、植物或真菌等不会思考的生命、无生命物体或信念等的事物。在这一方面,实体可以被视为一全包的词语。有时,实体被当做本质的广义,不论即指的是否为物质上的存在,如时常会指涉到的无物质形式的实体-语言。更有甚者,实体有时亦指存在或本质本身。在法律上,实体是指能具有权利和义务的事物。这通常是指法人,但也包括自然人。
因果关联学习,Causal Relational Learning
专知会员服务
179+阅读 · 2020年4月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
论文浅尝 | Explainable Link Prediction in Knowledge Hypergraphs
开放知识图谱
1+阅读 · 2022年11月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
图上的归纳表示学习
科技创新与创业
22+阅读 · 2017年11月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
因果关联学习,Causal Relational Learning
专知会员服务
179+阅读 · 2020年4月21日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员