17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020

2020 年 2 月 13 日 专知
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020

【导读】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美国纽约举办。Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!





知识图谱增强的语言模型


  • Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig:
    Latent Relation Language Models. AAAI 2020

    潜在关系语言模型

    本文提出了一种潜在关系语言模型(LRLMs),这是一类通过知识图谱关系对文档中词语的联合分布及其所包含的实体进行参数化的语言模型。该模型具有许多吸引人的特性:它不仅提高了语言建模性能,而且能够通过关系标注给定文本的实体跨度的后验概率。实验证明了基于单词的基线语言模型和先前合并知识图谱信息的方法的经验改进。定性分析进一步证明了该模型的学习能力,以预测适当的关系在上下文中。


  • K-BERT: Enabling Language Representation with Knowledge Graph

    K-BERT:使用知识图谱实现语言表示


异构KGs中的实体匹配


  • Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood AggregationZequn Sun (Nanjing University)*; Chengming Wang (Nanjing University); Wei Hu (Nanjing University); Muhao Chen (UPenn); Jian Dai (Alibaba Group); Wei Zhang (Alibaba Group); Yuzhong Qu (Nanjing University)



知识图谱补全与链接预测


  • Differentiable Reasoning on Large Knowledge Bases and Natural LanguagePasquale Minervini (University College London)*; Matko Bošnjak (DeepMind / UCL); Tim Rocktäschel (Facebook AI Research & University College London); Sebastian Riedel (UCL); Edward Grefenstette (Facebook AI Research)



  • Reasoning on Knowledge Graphs with Debate DynamicsMarcel Hildebrandt (Siemens )*; Jorge Andres Quintero Serna (Siemens); Yunpu Ma (LMU); Martin Ringsquandl (Siemens); Mitchell Joblin (Siemens); Volker Tresp (Siemens AG and Ludwig Maximilian University of Munich )





知识图谱会话与问答


  • Towards Scalable Multi-Domain Conversational Agents:The Schema-Guided Dialogue DatasetAbhinav Rastogi (Google)*; Xiaoxue Zang (Google); Srinivas Sunkara (Google); Raghav Gupta (Google); Pranav Khaitan (Google)



参考链接:

https://medium.com/@mgalkin/knowledge-graphs-aaai-2020-c457ad5aafc0


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“KG17” 就可以获取知识图谱Knowledge Graphs17篇论文 @AAAI2020》专知下载链接


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
57

相关内容

AAAI 2020 将于美国纽约举办,时间在 2 月 7 日-2 月 12 日,本届大会将是第 34 届 AAAI 大会。 AAAI 的英文全称是 Association for the Advance of Artificial Intelligence——美国人工智能协会。该协会是人工智能领域的主要学术组织之一,其主办的年会也是人工智能领域的国际顶级会议。在中国计算机学会的国际学术会议排名以及清华大学新发布的计算机科学推荐学术会议和期刊列表中,AAAI 均被列为人工智能领域的 A 类顶级会议。

In this paper we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After a general introduction, we motivate and contrast various graph-based data models and query languages that are used for knowledge graphs. We discuss the roles of schema, identity, and context in knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We summarise methods for the creation, enrichment, quality assessment, refinement, and publication of knowledge graphs. We provide an overview of prominent open knowledge graphs and enterprise knowledge graphs, their applications, and how they use the aforementioned techniques. We conclude with high-level future research directions for knowledge graphs.

0
79
下载
预览

简介: 今年AAAI 2020接收了1591篇论文,其中有140篇是与图相关的。接下来将会介绍几篇与图和知识图谱相关的几篇论文。以下为内容大纲:

  • KG-Augmented Language Models In Diherent Flavours

Hayashi等人在知识图上建立了自然语言生成(NLG)任务的潜在关系语言模型(LRLM)。就是说,模型在每个时间步上要么从词汇表中提取一个单词,要么求助于已知关系。 最终的任务是在给定主题实体的情况下生成连贯且正确的文本。 LRLM利用基础图上的KG嵌入来获取实体和关系表示,以及用于嵌入表面形式的Fasttext。 最后,要参数化流程,需要一个序列模型。作者尝试使用LSTM和Transformer-XL来评估与使用Wikidata批注的Freebase和WikiText链接的WikiFacts上的LRLM。

Liu等人提出了K-BERT,它希望每个句子(如果可能)都用来自某些KG的命名实体和相关(谓词,宾语)对进行注释。 然后,将丰富的句子树线性化为一个新的位置相似嵌入,并用可见性矩阵进行遮罩,该矩阵控制输入的哪些部分在训练过程中可以看到并得到关注。

Bouraoui等人进一步评估了BERT的关系知识,即在给定一对实体(例如,巴黎,法国)的情况下,它是否可以预测正确的关系。 作者指出,BERT在事实和常识性任务中通常是好的,而不是糟糕的非词性任务,并且在形态任务中相当出色。

  • Entity Matching in Heterogeneous KGs

不同的KG具有自己的模型来建模其实体,以前,基于本体的对齐工具仅依靠此类映射来标识相似实体。 今天,我们有GNN只需少量培训即可自动学习此类映射!

Sun等人提出了AliNet,这是一种基于端到端GNN的体系结构,能够对多跳邻域进行聚合以实现实体对齐。 由于架构异质性,由于相似的实体KG的邻域不是同构的,因此任务变得更加复杂。 为了弥补这一点,作者建议关注节点的n跳环境以及具有特定损失函数的TransE样式关系模式。

Xu等人研究了多语言KG(在这种情况下为DBpedia)中的对齐问题,其中基于GNN的方法可能陷入“多对一”的情况,并为给定的目标实体生成多个候选源实体。 作者研究了如何使他们的预测中的GNN编码输出更加确定。

  • Knowledge Graph Completion and Link Prediction

AAAI’20标记并概述了两个增长趋势:神经符号计算与临时性的KG越来越受到关注。

  • KG-based Conversational AI andQuestion Answering

AAAI’20主持了“对话状态跟踪研讨会”(DSTC8)。 该活动聚集了对话AI方面的专家,包括来自Google Assistant,Amazon Alexa和DeepPavlov的人员。在研讨会上,多个专家都提出了对话AI的相关研究方法。

成为VIP会员查看完整内容
Knowledge Graphs @ AAAI 2020 - Michael Galkin - Medium.pdf
0
95

【导读】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美国纽约举办。Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig: Latent Relation Language Models. AAAI 2020

  • 潜在关系语言模型:本文提出了一种潜在关系语言模型(LRLMs),这是一类通过知识图谱关系对文档中词语的联合分布及其所包含的实体进行参数化的语言模型。该模型具有许多吸引人的特性:它不仅提高了语言建模性能,而且能够通过关系标注给定文本的实体跨度的后验概率。实验证明了基于单词的基线语言模型和先前合并知识图谱信息的方法的经验改进。定性分析进一步证明了该模型的学习能力,以预测适当的关系在上下文中。

成为VIP会员查看完整内容
0
128

【导读】知识图谱一直是学术界和工业界关注的热点。随着AAAI2020的到来,专知小编整理了最新10篇关于知识图谱的论文,来自清华大学、中科大、北航、中山大学、UCL、Facebook、腾讯、阿里巴巴等,包含义原知识图谱、知识迁移、知识图谱层次表示、常识知识图谱补全。

1、Towards Building a Multilingual Sememe Knowledge Base: Predicting Sememes for BabelNet Synsets(建立多语言义原知识库:预测BabelNet Synsets的义原)

AAAI2020 oral ,清华大学

作者:Fanchao Qi, Liang Chang, Maosong Sun, Sicong Ouyang, Zhiyuan Liu

摘要:义原是人类语言中最小的语义单位。义原知识库(KBs)包含了由义原标注的词,已成功地应用于许多自然语言处理任务中。然而,现有的义原KBs仅建立在少数几种语言上,这阻碍了它们的广泛应用。为了解决这个问题,我们提出基于BabelNet(一种多语言百科词典)为多种语言构建统一的义原知识库。我们首先构建一个作为多语言义原知识库种子的数据集。它为超过15000个synset (BabelNet的条目)手工注释义位。然后,我们提出了一种新的自动预测synsets义位的任务,目的是将种子数据集扩展成一个可用的知识库。我们还提出了两个简单有效的模型,利用了不同的synsets信息。最后,我们进行了定量和定性分析,以探索任务中的重要因素和困难。所有的源代码和数据,这项工作可以获得 https://github.com/thunlp/BabelNet-Sememe-Prediction

论文地址: https://www.zhuanzhi.ai/paper/a9486b11f2d44f239cd36c209b312946

2、Knowledge Graph Transfer Network for Few-Shot Recognition(知识图谱迁移网络小样本识别)

AAAI2020 oral ,中山大学,暗物质

作者:Riquan Chen, Tianshui Chen, Xiaolu Hui, Hefeng Wu, Guanbin Li, Liang Lin

摘要:小样本学习的目标是在给定一些基类有充足训练样本的情况下,从非常少的样本中学习新的类别。这个任务的主要挑战是新类很容易由颜色、质地、形状的物体或背景上下文(即特异性),这特别是对于训练样本少且不常见的相应的类别非常突出(见图1)。幸运的是,我们发现迁移信息的相关类别可以帮助学习新概念,从而避免新概念主导的特异性。此外,结合不同类别之间的语义关联可以有效地规范这种信息传递。在本文中,我们将语义关联以结构化的知识图谱的形式表示出来,并将此图集成到深度神经网络中,通过一种新的知识图谱传输网络(KGTN)来促进小样本学习。具体地,通过使用对应类别的分类器权值初始化每个节点,学习一种传播机制,通过图来自适应地传播节点消息,探索节点间的交互,将基类的分类器信息传递给新类别的分类器信息。在ImageNet数据集上的大量实验表明,与当前领先的对比方法相比,性能有了显著的改进。此外,我们还构建了一个覆盖更大范围类别的ImageNet-6K数据集。在这个数据集上的实验进一步证明了我们提出的模型的有效性。

论文地址: https://www.zhuanzhi.ai/paper/391fa8f7db194b700d66a14a75b714bd

3、Reasoning on Knowledge Graphs with Debate Dynamics(基于辩论动力学的知识图谱推理)

AAAI2020 ,Siemens Corporate Technology

作者:Marcel Hildebrandt, Jorge Andres Quintero Serna, Yunpu Ma, Martin Ringsquandl, Mitchell Joblin, Volker Tresp

摘要: 我们提出了一种基于辩论动力学的知识图谱自动推理方法。其主要思想是将三元组分类任务框定为两个抽取论点(知识图谱中的路径)的强化学习代理之间的辩论游戏,目标分别是促进事实为真(正题)或事实为假(反题)。基于这些论据,一个叫做“法官”的二元分类器决定事实是对还是错。这两个代理可以被看作是稀疏的、对抗性的特征生成器,它们为正题或反题提供了可解释的证据。与其他黑盒方法相比,这些参数允许用户了解法官的决定。由于这项工作的重点是创建一个可解释的方法,以保持一个有竞争力的预测精度,我们基准的三重分类和链接预测任务我们的方法。因此,我们发现我们的方法优于基准数据集FB15k-237、WN18RR和Hetionet上的几个基线。我们也进行了一个调查,发现提取的参数对用户是有益的。

论文地址: https://www.zhuanzhi.ai/paper/81aa00f925a022ed59d97dcce89c11d6

4、Differentiable Reasoning on Large Knowledge Bases and Natural Language(大规模知识库与自然语言上的可微分推理)

AAAI2020 ,UCL Centre for Artificial Intelligence, University College London,Facebook AI Research

作者:Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, Edward Grefenstette

摘要:用自然语言和知识库(KBs)表达的知识进行推理是人工智能面临的主要挑战,在机器阅读、对话和问题回答等方面都有应用。联合学习文本表示和转换的一些神经体系结构非常缺乏数据效率,很难分析它们的推理过程。这些问题由端到端的可微推理系统(如神经定理证明程序(NTPs))来解决,尽管它们只能用于小型符号KBs。在本文中,我们首先提出贪心NTPs (GNTPs),这是NTPs的扩展,解决了它们的复杂性和可伸缩性限制,从而使它们适用于真实世界的数据集。该结果是通过动态构建NTPs的计算图来实现的,并且只包含推理过程中最有希望的证明路径,从而获得更有效的模型。然后,我们提出了一种新的方法,通过在一个共享的嵌入空间中嵌入逻辑事实和自然语言句子来联合推理KBs和篇章提及。我们发现,GNTPs的性能与NTPs相当,但成本仅为NTPs的一小部分,同时在大型数据集上获得了具有竞争力的链接预测结果,为预测提供了解释,并引入了可解释的模型。源代码,数据集,和补充材料可在网上https://github.com/uclnlp/gntp

论文地址: https://www.zhuanzhi.ai/paper/5c5ba7a95bb0678315804cffdac41599

5、Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering(通过知识库问题回答来改进知识感知对话的生成)

AAAI2020 ,华南理工,腾讯

作者:Jian Wang, Junhao Liu, Wei Bi, Xiaojiang Liu, Kejing He, Ruifeng Xu, Min Yang

摘要:神经网络模型常常面临将常识引入开放域对话系统的挑战。本文提出了一种新的知识感知对话生成模型(TransDG),该模型将基于知识库问答(KBQA)任务的问题表示和知识匹配能力进行转换,以促进话语理解和对话生成的事实知识选择。此外,我们提出了一种响应引导注意和多步骤解码策略,以指导我们的模型将重点放在用于响应生成的相关特征上。在两个基准数据集上的实验表明,该模型在生成信息丰富、流畅的对话方面具有较强的优越性。我们的代码在 https://github.com/siat-nlp/TransDG.

论文地址https://www.zhuanzhi.ai/paper/9a1e55686d9b78f5c2569a607fa504b2

6、Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction(用于链接预测的学习层次感知知识图嵌入)

AAAI2020 ,中科大

作者:Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, Jie Wang

摘要:知识图谱嵌入的目的是将实体和关系表示为低维向量(或矩阵、张量等),已经被证明是一种预测知识图谱中缺失链接的强大技术。现有的知识图谱嵌入模型主要侧重于对称/反对称、反转、复合等关系模式的建模。然而,许多现有的方法无法对语义层次结构建模,而这在实际应用程序中是很常见的。为了解决这一问题,我们提出了一种新的知识图谱嵌入模型——层次感知知识图谱嵌入(HAKE),它将实体映射到极坐标系统中。HAKE的灵感来自于这样一个事实,即在极坐标系统中的同心圆可以自然地反映层次结构。具体来说,径向坐标的目标是在层次结构的不同层次上对实体进行建模,半径较小的实体被期望在更高的层次上;角坐标的目的是区分层次结构中同一层次上的实体,这些实体的半径大致相同,但角度不同。实验表明,HAKE可以有效地对知识图谱中的语义层次进行建模,并在链接预测任务的基准数据集上显著优于现有的最先进的方法。

.

论文地址: https://www.zhuanzhi.ai/paper/1369a6bd83e18cd1e6eeb97d883bb652

7、Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation(用具有门控多跳邻居聚合的知识图谱对齐网络)

AAAI2020 ,南京大学,阿里巴巴

作者:Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, Yuzhong Qu

摘要:图神经网络由于具有识别同构子图的能力,已经成为一种强大的基于嵌入的实体对齐范式。然而,在实知识图(KGs)中,对应实体通常具有非同构的邻域结构,这很容易导致gnn产生不同的表示。为了解决这一问题,我们提出了一种新的KG对齐网络,即AliNet,旨在以端到端方式缓解邻域结构的非同构性。由于模式异构性,对等实体的直接邻居通常是不相似的,AliNet引入了远程邻居来扩展它们的邻居结构之间的重叠。它采用了一种注意机制,以突出有益的遥远的邻居和减少噪音。然后,利用门控机制控制直接和远处邻居信息的聚合。我们进一步提出了一个关系损失来细化实体表示。我们进行了深入的实验,详细的烧蚀研究和分析的五个实体对齐数据集,证明了AliNet的有效性。

.

论文地址: https://www.zhuanzhi.ai/paper/bc1ac5e992eb35a3f3a5f7fffee3368a

8、Rule-Guided Compositional Representation Learning on Knowledge Graphs(规则指导的知识图谱组合式表示学习)

AAAI2020 ,北航

作者:Guanglin Niu, Yongfei Zhang, Bo Li, Peng Cui, Si Liu, Jingyang Li, Xiaowei Zhang

摘要:知识图谱的表示学习是将知识图中的实体和关系嵌入到低维连续向量空间中。早期的KG嵌入方法只关注三元组编码的结构化信息,由于KGs的结构稀疏性,导致其性能有限。最近的一些尝试考虑路径信息来扩展KGs的结构,但在获取路径表示的过程中缺乏可解释性。本文提出了一种新的基于规则和路径的联合嵌入(RPJE)方案,该方案充分利用了逻辑规则的可解释性和准确性、KG嵌入的泛化性以及路径的补充语义结构。具体来说,首先从KG中挖掘出不同长度(规则体中的关系数)的Horn子句形式的逻辑规则,并对其进行编码,用于表示学习。然后,利用长度2的规则来精确地组合路径,而使用长度1的规则来明确地创建关系之间的语义关联和约束关系嵌入。优化时还考虑了规则的置信度,保证了规则在表示学习中的可用性。大量的实验结果表明,RPJE在KG完成任务上的表现优于其他最先进的基线,这也证明了利用逻辑规则和路径来提高表示学习的准确性和可解释性的优越性。

.

论文地址https://www.zhuanzhi.ai/paper/bc1ac5e992eb35a3f3a5f7fffee3368a

9、InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions(规InteractE:通过增加特征交互来改进基于卷积的知识图谱嵌入)

AAAI2020 ,Indian Institute of Science, Columbia University

作者:Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, Partha Talukdar

摘要:现有的知识图谱大多存在不完备性,可以通过基于已知事实推断缺失的链接来缓解不完备性。一种流行的方法是生成实体和关系的低维嵌入,并使用它们进行推论。ConvE是最近提出的一种方法,它将卷积滤波器应用于实体和关系嵌入的二维重塑,以捕获其组件之间丰富的交互。然而,ConvE能够捕获的交互的数量是有限的。在这篇论文中,我们分析了增加这些相互作用的数量如何影响链路预测性能,并利用我们的观测结果提出了相互作用。InteractE基于三个关键思想:特征置换、新颖的特征重塑和循环卷积。通过大量的实验,我们发现InteractE在FB15k-237上的性能优于最先进的卷积链路预测基线。此外,InteractE在FB15k-237、WN18RR和YAGO3-10数据集上的MRR评分分别比ConvE高9%、7.5%和23%。结果验证了我们的中心假设——增加特征交互有助于链接预测性能。我们提供InteractE的源代码,以鼓励可重复的研究。http://github.com/malllabiisc/ InteractE.

.

论文地址: https://www.zhuanzhi.ai/paper/5bbb1f49b1b4b26b6d1de5c7dce3a953

10、Commonsense Knowledge Base Completion with Structural and Semantic Context(具有结构和语义上下文的常识知识库的完成)

AAAI2020 ,Allen Institute for Artificial Intelligence 华盛顿大学

作者:Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, Yejin Choi

摘要:与经过大量研究的传统知识库(如Freebase)相比,对常识知识图谱(如原子图和概念图)的自动知识库补全带来了独特的挑战。常识知识图谱使用自由格式的文本来表示节点,这使得节点的数量比传统KBs多了几个数量级(ATOMIC比Freebase多18倍(FB15K-237))。重要的是,这意味着图数据结构将显著稀疏化——这是现有KB补全方法面临的主要挑战,因为这些方法在相对较小的节点集上采用密集连接的图数据。在本文中,我们提出了新的知识库完成模型,该模型可以通过利用节点的结构和语义上下文来解决这些挑战。具体来说,我们研究了两个关键的思想: (1) 从局部图结构学习,使用图卷积网络和自动图加密,(2) 从预先训练的语言模型学习到知识图谱,以增强知识的上下文表示。我们描述了将来自这两个来源的信息合并到一个联合模型中的方法,并提供了原子知识库完成和使用ConceptNet上的排名指标进行评估的第一个经验结果。我们的结果证明了语言模型表示在提高链接预测性能方面的有效性,以及在训练子图以提高计算效率时从局部图结构(对ConceptNet的MRR +1.5分)学习的优势。对模型预测的进一步分析揭示了语言模型能够很好地捕捉到的常识类型。

.

论文地址: https://www.zhuanzhi.ai/paper/535d810640d4b84fb46f3fd7e678f423

成为VIP会员查看完整内容
0
105

题目: Group Representation Theory for Knowledge Graph Embedding

摘要: 最近,知识图谱嵌入已经成为一种流行的建模和推断缺失链接的方法。本文提出了一种知识图谱嵌入的群论观点,将以往的方法与不同的群作用联系起来。此外,利用群表示理论中的Schur引理,我们证明了最新的嵌入方法RotatE具有从任意有限阿贝尔群建立关系的能力

作者简介: Chen Cai,俄亥俄州立大学计算机科学与工程系博士。他的研究兴趣在于图表示学习和拓扑数据分析。

成为VIP会员查看完整内容
0
16

论文题目:
Latent Relation Language Models

论文摘要: 在本文中,我们提出了潜在关系语言模型(LRLM),它是一类语言模型,它通过知识图的关系参数化文档中单词和其中出现的实体的联合分布。 该模型具有许多吸引人的属性:它不仅提高了语言建模性能,而且还能够注释实体跨度对于关联文本的后验概率。 实验表明,在基于单词的基准语言模型和结合了知识图谱信息的先前方法上,经验性改进。 定性分析进一步证明了该模型在上下文中学习最佳预测适当关系的能力。

成为VIP会员查看完整内容
0
44
小贴士
相关资讯
【论文笔记】基于BERT的知识图谱补全
专知
99+阅读 · 2019年9月15日
动态知识图谱补全论文合集
专知
41+阅读 · 2019年4月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
25+阅读 · 2019年4月12日
【荟萃】知识图谱论文与笔记
专知
42+阅读 · 2019年3月25日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
7+阅读 · 2019年2月1日
收藏 | 最新知识图谱论文清单(附解读、下载)
THU数据派
8+阅读 · 2018年11月19日
知识表示学习领域代表论文全盘点
AI科技评论
6+阅读 · 2018年2月14日
相关论文
Aidan Hogan,Eva Blomqvist,Michael Cochez,Claudia d'Amato,Gerard de Melo,Claudio Gutierrez,José Emilio Labra Gayo,Sabrina Kirrane,Sebastian Neumaier,Axel Polleres,Roberto Navigli,Axel-Cyrille Ngonga Ngomo,Sabbir M. Rashid,Anisa Rula,Lukas Schmelzeisen,Juan Sequeda,Steffen Staab,Antoine Zimmermann
79+阅读 · 2020年3月4日
Quan Wang,Pingping Huang,Haifeng Wang,Songtai Dai,Wenbin Jiang,Jing Liu,Yajuan Lyu,Yong Zhu,Hua Wu
6+阅读 · 2019年11月6日
Efficiently Embedding Dynamic Knowledge Graphs
Tianxing Wu,Arijit Khan,Huan Gao,Cheng Li
10+阅读 · 2019年10月15日
K-BERT: Enabling Language Representation with Knowledge Graph
Weijie Liu,Peng Zhou,Zhe Zhao,Zhiruo Wang,Qi Ju,Haotang Deng,Ping Wang
16+阅读 · 2019年9月17日
Domain Representation for Knowledge Graph Embedding
Cunxiang Wang,Feiliang Ren,Zhichao Lin,Chenxv Zhao,Tian Xie,Yue Zhang
9+阅读 · 2019年9月11日
Liang Yao,Chengsheng Mao,Yuan Luo
8+阅读 · 2019年9月11日
Xuelu Chen,Muhao Chen,Weijia Shi,Yizhou Sun,Carlo Zaniolo
6+阅读 · 2019年2月26日
Haoyu Wang,Vivek Kulkarni,William Yang Wang
5+阅读 · 2018年10月31日
Tommaso Soru,Stefano Ruberto,Diego Moussallem,Edgard Marx,Diego Esteves,Axel-Cyrille Ngonga Ngomo
7+阅读 · 2018年3月21日
Liwei Cai,William Yang Wang
5+阅读 · 2018年2月20日
Top