Vector autoregressions (VARs) are popular in analyzing economic time series. However, VARs can be over-parameterized if the numbers of variables and lags are moderately large. Tensor VAR, a recent solution to overparameterization, treats the coefficient matrix as a third-order tensor and estimates the corresponding tensor decomposition to achieve parsimony. In this paper, the inference of Tensor VARs is inspired by the literature on factor models. Firstly, we determine the rank by imposing the Multiplicative Gamma Prior to margins, i.e. elements in the decomposition, and accelerate the computation with an adaptive inferential scheme. Secondly, to obtain interpretable margins, we propose an interweaving algorithm to improve the mixing of margins and introduce a post-processing procedure to solve column permutations and sign-switching issues. In the application of the US macroeconomic data, our models outperform standard VARs in point and density forecasting and yield interpretable results consistent with the US economic history.
翻译:在分析经济时间序列时,矢量自动递减(VARs)很受欢迎。然而,如果变量和时滞的数量比较大,VARs可能会被过度计量。Tensor VAR是最近一个多参数化的解决方案,它把系数矩阵作为第三阶振量处理,并估计相应的电离分解以达到微量。在本文中,Tensor VARs的推论受关于要素模型的文献的启发。首先,我们通过在边距之前强制采用多倍倍增伽玛(倍增伽玛)来决定其等级,即分解中的元素,并用适应性推断法加速计算计算。第二,为了获得可解释的边距,我们提议一种互动算法,以改进边距的混合,并采用后处理程序来解决列变异和信号转换问题。在应用美国宏观经济数据时,我们的模型在点和密度预测中超越了标准VARs值,并产生与美国经济历史一致的可解释结果。