Recent advances in deep representation learning on Riemannian manifolds extend classical deep learning operations to better capture the geometry of the manifold. One possible extension is the Fr\'echet mean, the generalization of the Euclidean mean; however, it has been difficult to apply because it lacks a closed form with an easily computable derivative. In this paper, we show how to differentiate through the Fr\'echet mean for arbitrary Riemannian manifolds. Then, focusing on hyperbolic space, we derive explicit gradient expressions and a fast, accurate, and hyperparameter-free Fr\'echet mean solver. This fully integrates the Fr\'echet mean into the hyperbolic neural network pipeline. To demonstrate this integration, we present two case studies. First, we apply our Fr\'echet mean to the existing Hyperbolic Graph Convolutional Network, replacing its projected aggregation to obtain state-of-the-art results on datasets with high hyperbolicity. Second, to demonstrate the Fr\'echet mean's capacity to generalize Euclidean neural network operations, we develop a hyperbolic batch normalization method that gives an improvement parallel to the one observed in the Euclidean setting.
翻译:Riemannian 的深层代表性学习最近的进展扩大了经典深层学习操作,以更好地捕捉元体的几何。 一个可能的扩展是 Fr\'echet 的意思, 泛泛的Euclidean 平均值; 然而, 之所以难以应用, 因为它缺乏封闭的形式, 缺少一种容易比较的衍生物。 在本文中, 我们展示了如何通过Fr\'echet 来区分任意的Riemannian 元体。 然后, 聚焦于超双曲空间, 我们产生了清晰的梯度表达式, 以及一个快速、准确和无超光度的Fr\' echet 平均值解答器。 这完全将 Fr\'echchechet 的意思融入了超双曲线神经网络管道。 为了展示这种整合, 我们提出两个案例研究。 首先, 我们应用我们的Fr\'echchechet 的意思是现有的超曲形结构革命网络, 取代其预测的组合, 以高度的超偏心状态获取最新结果。 其次, 演示 Fr\'echetchet' 意意味着 表示一种将 Eucelide comleadal deal real magraduducilde lating a to put a lating a put a put a lating a lacide acturning a put a lagild a progild.