The rapid development of cloud computing has probably benefited each of us. However, the privacy risks brought by untrustworthy cloud servers arise the attention of more and more people and legislatures. In the last two decades, plenty of works seek to outsource various specific tasks while ensuring the security of private data. The tasks to be outsourced are countless; however, the computations involved are similar. In this paper, we construct a series of novel protocols that support the secure computation of various functions on numbers (e.g., the basic elementary functions) and matrices (e.g., the calculation of eigenvectors and eigenvalues) in arbitrary $n\geq 2$ servers. All protocols only require constant rounds of interactions and achieve the low computation complexity. Moreover, the proposed $n$-party protocols ensure the security of private data even though $n-1$ servers collude. The convolutional neural network models are utilized as the case studies to verify the protocols. The theoretical analysis and experimental results demonstrate the correctness, efficiency, and security of the proposed protocols.
翻译:云计算速度的迅速发展可能使我们每个人都受益。然而,不可靠的云服务器带来的隐私风险引起了越来越多的人和立法机构的注意。在过去20年中,大量工作寻求将各种具体任务外包,同时确保私人数据的安全。外包的任务不尽相同;然而,所涉及的计算方法相似。在本文件中,我们制定了一系列小说协议,支持安全计算数字(例如基本基本功能)和任意使用的$n\geq 2 服务器中的矩阵(例如计算精子和精子值)的各种功能(例如计算精子和精子值)。所有协议只需要不断进行几轮互动,并实现低的计算复杂性。此外,拟议的$(n)缔约方协议确保私人数据的安全,尽管服务器合用$-1美元。革命神经网络模型被用作核查协议的案例研究。理论分析和实验结果显示了拟议协议的正确性、效率和安全性。