We solve the stochastic generalized Nash equilibrium (SGNE) problem in merely monotone games with expected value cost functions. Specifically, we present the first distributed SGNE seeking algorithm for monotone games that only requires one proximal computation (e.g., one projection step) and only one pseudogradient evaluation per iteration. Our main contribution is to build upon the relaxed forward-backward operator splitting by Malitsky (Mathematical programming, 2019) and in turn to show almost sure convergence to a SGNE when the expected value of the pseudogradient is approximated by the average over a number of random samples.


翻译:具体地说,我们展示了第一个分布式的SENE单调游戏寻找单调游戏的算法,而单调游戏只需要一种近似计算(例如,一个预测步骤),而每次迭代只需要一个假基因评价。 我们的主要贡献是利用马利茨基的放松的前向后向操作器分裂(数学编程,2019年),然后在假造模型的预期值与若干随机样本的平均值接近时,我们又几乎肯定地表现出与SGNE的趋同。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员