In this paper, we investigate the possibility of the backward-differential-flow-like algorithm which starts from the minimum of convexification version of the polynomial. We apply the heat evolution convexification approach through Gaussian filtering, which is actually an accumulation version of Steklov's regularization. We generalize the fingerprint theory which was proposed in the theory of computer vision by A.L. Yuille and T. Poggio in 1980s, in particular their fingerprint trajectory equation, to characterize the evolution of minimizers across the scale. On the other hand, we propose the "seesaw" polynomials $p(x|s)$ and we find a seesaw differential equation $\frac{\partial p(x|s)}{\,ds}=-\frac{1}{p''(x)}$ to characterize the evolution of global minimizer $x^*(s)$ of $p(x|s)$ while varying $s$. Essentially, both the fingerprints $\mathcal{FP}_2$ and $\mathcal{FP}_3$ of $p(x)$, consisting of the zeros of $\frac{\partial^2 p(x,t)}{\partial x^2}$ and $\frac{\partial^3 p(x,t)}{\partial x^3}$, respectively, are independent of seesaw coefficient $s$, upon which we define the Confinement Zone and Escape Zone. Meanwhile, varying $s$ will monotonically condition the location of global minimizer of $p(x|s)$, and all these location form the Attainable Zone. Based on these concepts, we prove that the global minimizer $x^*$ of $p(x)$ can be inversely evolved from the global minimizer of its convexification polynomial $p(x,t_0)$ if and only if $x^*$ is included in the Escape Zone. In particular, we give detailed analysis for quartic and six degree polynomials.
翻译:在本文中, 我们调查了从多球形最小化版本开始的向后偏向流式算法的可能性。 我们通过高斯过滤, 实际上是 Steklov 正规化的累积版本。 我们推广了 A. L. Yuille 和 T. Poggio 在计算机视觉理论中建议的指纹理论, 特别是它们的指纹轨迹方程式, 以描述整个比例范围内最小化的演进。 另一方面, 我们提出“ 显示$$$ 的多球形算法 $ p pp 。 我们通过高斯过滤, 实际上是 Steklov 的积累版。 我们推广了在 A. L. L. Yuille和 T. Poggio 中建议的指纹理论, 特别是他们的指纹轨迹方程方程方程方程方程方程方圆( 美元 美元) 和 美元方程方程方程方块方块方块方块的直径方块方块方块方块方块方块方块方块 。