Vizing's theorem states that any $n$-vertex $m$-edge graph of maximum degree $\Delta$ can be edge colored using at most $\Delta + 1$ different colors. Vizing's original proof is easily translated into a deterministic $O(mn)$ time algorithm. This deterministic time bound was subsequently improved to $\tilde O(m \sqrt n)$ time, independently by [Arjomandi, 1982] and by [Gabow et al., 1985]. A series of recent papers improved the time bound of $\tilde O(m\sqrt{n})$ using randomization, culminating in the randomized near-linear time $(\Delta+1)$-coloring algorithm by [Assadi, Behnezhad, Bhattacharya, Costa, Solomon, and Zhang, 2025]. At the heart of all of these recent improvements, there is some form of a sublinear time algorithm. Unfortunately, sublinear time algorithms as a whole almost always require randomization. This raises a natural question: can the deterministic time complexity of the problem be reduced below the $\tilde O(m\sqrt{n})$ barrier? In this paper, we answer this question in the affirmative. We present a deterministic almost-linear time $(\Delta+1)$-coloring algorithm, namely, an algorithm running in $m \cdot 2^{O(\sqrt{\log \Delta})} \cdot \log n = m^{1+o(1)}$ time. Our main technical contribution is to entirely forego sublinear time algorithms. We do so by presenting a new deterministic color-type sparsification approach that runs in almost-linear (instead of sublinear) time, but can be used to color a much larger set of edges.
翻译:维津定理指出,任何具有$n$个顶点、$m$条边且最大度为$\Delta$的图,最多可以使用$\Delta + 1$种不同的颜色进行边着色。维津的原始证明很容易转化为一个确定性$O(mn)$时间算法。随后,[Arjomandi, 1982]和[Gabow et al., 1985]分别独立地将这一确定性时间上界改进到$\tilde O(m \sqrt n)$时间。最近的一系列论文利用随机化改进了$\tilde O(m\sqrt{n})$的时间上界,最终由[Assadi, Behnezhad, Bhattacharya, Costa, Solomon, and Zhang, 2025]提出了随机近线性时间的$(\Delta+1)$-着色算法。所有这些近期改进的核心,都依赖于某种形式的亚线性时间算法。然而,亚线性时间算法作为一个整体几乎总是需要随机化。这引出了一个自然的问题:该问题的确定性时间复杂度能否突破$\tilde O(m\sqrt{n})$的壁垒?在本文中,我们对此问题给出了肯定的回答。我们提出了一种确定性近线性时间的$(\Delta+1)$-着色算法,即一个运行时间为$m \cdot 2^{O(\sqrt{\log \Delta})} \cdot \log n = m^{1+o(1)}$的算法。我们的主要技术贡献是完全避开了亚线性时间算法。我们通过提出一种新的确定性颜色类型稀疏化方法来实现这一点,该方法运行在近线性(而非亚线性)时间,但可用于对更大规模的边集进行着色。