Connectivity (or equivalently, unweighted maximum flow) is an important measure in graph theory and combinatorial optimization. Given a graph $G$ with vertices $s$ and $t$, the connectivity $\lambda(s,t)$ from $s$ to $t$ is defined to be the maximum number of edge-disjoint paths from $s$ to $t$ in $G$. Much research has gone into designing fast algorithms for computing connectivities in graphs. Previous work showed that it is possible to compute connectivities for all pairs of vertices in directed graphs with $m$ edges in $\tilde{O}(m^\omega)$ time [Chueng, Lau, and Leung, FOCS 2011], where $\omega \in [2,2.3716)$ is the exponent of matrix multiplication. For the related problem of computing "small connectivities," it was recently shown that for any positive integer $k$, we can compute $\min(k,\lambda(s,t))$ for all pairs of vertices $(s,t)$ in a directed graph with $n$ nodes in $\tilde{O}((kn)^\omega)$ time [Akmal and Jin, ICALP 2023]. In this paper, we present an alternate exposition of these $\tilde{O}(m^\omega)$ and $\tilde{O}((kn)^\omega)$ time algorithms, with simpler proofs of correctness. Earlier proofs were somewhat indirect, introducing an elegant but ad hoc "flow vector framework" for showing correctness of these algorithms. In contrast, we observe that these algorithms for computing exact and small connectivity values can be interpreted as testing whether certain generating functions enumerating families of edge-disjoint paths are nonzero. This new perspective yields more transparent proofs, and ties the approach for these problems more closely to the literature surrounding algebraic graph algorithms.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年9月21日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2023年9月21日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员