When can two sequential steps performed by a computing device be considered (causally) independent? This is a relevant question for concurrent and distributed systems, since independence means that they could be executed in any order, and potentially in parallel. Equivalences identifying rewriting sequences which differ only for independent steps are at the core of the theory of concurrency of many formalisms. We investigate the issue in the context of the double pushout approach to rewriting in the general setting of adhesive categories. While a consolidated theory exists for linear rules,which can consume, preserve and generate entities, this paper focuses on left-linear rules which may also "merge" parts of the state. This is an apparently minimal, yet technically hard enhancement,since a standard characterisation of independence that - in the linear case - allows one to derive a number of properties, essential in the development of a theory of concurrency, no longer holds. The paper performs an in-depth study of the notion of independence for left-linear rules: it introduces a novel characterisation of independence, identifies well-behaved classes of left-linear rewriting systems,and provides some fundamental results including a Church-Rosser property and the existence of canonical equivalence proofs for concurrent computations. These results properly extends the class of formalisms that can be modelled in the adhesive framework


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
29+阅读 · 2022年3月28日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
19+阅读 · 2018年5月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员