Recently, label consistent k-svd(LC-KSVD) algorithm has been successfully applied in image classification. The objective function of LC-KSVD is consisted of reconstruction error, classification error and discriminative sparse codes error with l0-norm sparse regularization term. The l0-norm, however, leads to NP-hard issue. Despite some methods such as orthogonal matching pursuit can help solve this problem to some extent, it is quite difficult to find the optimum sparse solution. To overcome this limitation, we propose a label embedded dictionary learning(LEDL) method to utilise the $\ell_1$-norm as the sparse regularization term so that we can avoid the hard-to-optimize problem by solving the convex optimization problem. Alternating direction method of multipliers and blockwise coordinate descent algorithm are then used to optimize the corresponding objective function. Extensive experimental results on six benchmark datasets illustrate that the proposed algorithm has achieved superior performance compared to some conventional classification algorithms.

4
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。

In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take into account the distribution (as estimated from training data) of the term across the classes of interest. Although `supervised term weighting' approaches that use this intuition have been described before, they have failed to show consistent improvements. In this article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting function optimised on the training set of interest; we dub this approach \emph{Learning to Weight} (LTW). The experiments that we run on several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting approaches in text classification.

0
8
下载
预览

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

0
8
下载
预览

This paper tackles a new problem setting: reinforcement learning with pixel-wise rewards (pixelRL) for image processing. After the introduction of the deep Q-network, deep RL has been achieving great success. However, the applications of deep RL for image processing are still limited. Therefore, we extend deep RL to pixelRL for various image processing applications. In pixelRL, each pixel has an agent, and the agent changes the pixel value by taking an action. We also propose an effective learning method for pixelRL that significantly improves the performance by considering not only the future states of the own pixel but also those of the neighbor pixels. The proposed method can be applied to some image processing tasks that require pixel-wise manipulations, where deep RL has never been applied. We apply the proposed method to three image processing tasks: image denoising, image restoration, and local color enhancement. Our experimental results demonstrate that the proposed method achieves comparable or better performance, compared with the state-of-the-art methods based on supervised learning.

0
3
下载
预览

We propose a novel locally adaptive learning estimator for enhancing the inter- and intra- discriminative capabilities of Deep Neural Networks, which can be used as improved loss layer for semantic image segmentation tasks. Most loss layers compute pixel-wise cost between feature maps and ground truths, ignoring spatial layouts and interactions between neighboring pixels with same object category, and thus networks cannot be effectively sensitive to intra-class connections. Stride by stride, our method firstly conducts adaptive pooling filter operating over predicted feature maps, aiming to merge predicted distributions over a small group of neighboring pixels with same category, and then it computes cost between the merged distribution vector and their category label. Such design can make groups of neighboring predictions from same category involved into estimations on predicting correctness with respect to their category, and hence train networks to be more sensitive to regional connections between adjacent pixels based on their categories. In the experiments on Pascal VOC 2012 segmentation datasets, the consistently improved results show that our proposed approach achieves better segmentation masks against previous counterparts.

0
3
下载
预览

Recently, much advance has been made in image captioning, and an encoder-decoder framework has achieved outstanding performance for this task. In this paper, we propose an extension of the encoder-decoder framework by adding a component called guiding network. The guiding network models the attribute properties of input images, and its output is leveraged to compose the input of the decoder at each time step. The guiding network can be plugged into the current encoder-decoder framework and trained in an end-to-end manner. Hence, the guiding vector can be adaptively learned according to the signal from the decoder, making itself to embed information from both image and language. Additionally, discriminative supervision can be employed to further improve the quality of guidance. The advantages of our proposed approach are verified by experiments carried out on the MS COCO dataset.

0
6
下载
预览

Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Recently, many deep hashing methods have been proposed and shown largely improved performance over traditional feature-learning-based methods. Most of these methods examine the pairwise similarity on the semantic-level labels, where the pairwise similarity is generally defined in a hard-assignment way. That is, the pairwise similarity is '1' if they share no less than one class label and '0' if they do not share any. However, such similarity definition cannot reflect the similarity ranking for pairwise images that hold multiple labels. In this paper, a new deep hashing method is proposed for multi-label image retrieval by re-defining the pairwise similarity into an instance similarity, where the instance similarity is quantified into a percentage based on the normalized semantic labels. Based on the instance similarity, a weighted cross-entropy loss and a minimum mean square error loss are tailored for loss-function construction, and are efficiently used for simultaneous feature learning and hash coding. Experiments on three popular datasets demonstrate that, the proposed method outperforms the competing methods and achieves the state-of-the-art performance in multi-label image retrieval.

0
5
下载
预览

In this work, we present a deep learning framework for multi-class breast cancer image classification as our submission to the International Conference on Image Analysis and Recognition (ICIAR) 2018 Grand Challenge on BreAst Cancer Histology images (BACH). As these histology images are too large to fit into GPU memory, we first propose using Inception V3 to perform patch level classification. The patch level predictions are then passed through an ensemble fusion framework involving majority voting, gradient boosting machine (GBM), and logistic regression to obtain the image level prediction. We improve the sensitivity of the Normal and Benign predicted classes by designing a Dual Path Network (DPN) to be used as a feature extractor where these extracted features are further sent to a second layer of ensemble prediction fusion using GBM, logistic regression, and support vector machine (SVM) to refine predictions. Experimental results demonstrate our framework shows a 12.5$\%$ improvement over the state-of-the-art model.

0
8
下载
预览

Unsupervised learning permits the development of algorithms that are able to adapt to a variety of different data sets using the same underlying rules thanks to the autonomous discovery of discriminating features during training. Recently, a new class of Hebbian-like and local unsupervised learning rules for neural networks have been developed that minimise a similarity matching cost-function. These have been shown to perform sparse representation learning. This study tests the effectiveness of one such learning rule for learning features from images. The rule implemented is derived from a nonnegative classical multidimensional scaling cost-function, and is applied to both single and multi-layer architectures. The features learned by the algorithm are then used as input to an SVM to test their effectiveness in classification on the established CIFAR-10 image dataset. The algorithm performs well in comparison to other unsupervised learning algorithms and multi-layer networks, thus suggesting its validity in the design of a new class of compact, online learning networks.

0
5
下载
预览

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

0
10
下载
预览

The Residual Networks of Residual Networks (RoR) exhibits excellent performance in the image classification task, but sharply increasing the number of feature map channels makes the characteristic information transmission incoherent, which losses a certain of information related to classification prediction, limiting the classification performance. In this paper, a Pyramidal RoR network model is proposed by analysing the performance characteristics of RoR and combining with the PyramidNet. Firstly, based on RoR, the Pyramidal RoR network model with channels gradually increasing is designed. Secondly, we analysed the effect of different residual block structures on performance, and chosen the residual block structure which best favoured the classification performance. Finally, we add an important principle to further optimize Pyramidal RoR networks, drop-path is used to avoid over-fitting and save training time. In this paper, image classification experiments were performed on CIFAR-10/100 and SVHN datasets, and we achieved the current lowest classification error rates were 2.96%, 16.40% and 1.59%, respectively. Experiments show that the Pyramidal RoR network optimization method can improve the network performance for different data sets and effectively suppress the gradient disappearance problem in DCNN training.

0
3
下载
预览
小贴士
相关论文
Learning to Weight for Text Classification
Alejandro Moreo Fernández,Andrea Esuli,Fabrizio Sebastiani
8+阅读 · 2019年3月28日
H. Ismail Fawaz,G. Forestier,J. Weber,L. Idoumghar,P. Muller
8+阅读 · 2019年3月14日
Ryosuke Furuta,Naoto Inoue,Toshihiko Yamasaki
3+阅读 · 2018年11月13日
Jinjiang Guo,Pengyuan Ren,Aiguo Gu,Jian Xu,Weixin Wu
3+阅读 · 2018年4月16日
Wenhao Jiang,Lin Ma,Xinpeng Chen,Hanwang Zhang,Wei Liu
6+阅读 · 2018年4月3日
Zheng Zhang,Qin Zou,Qian Wang,Yuewei Lin,Qingquan Li
5+阅读 · 2018年3月19日
Yeeleng S. Vang,Zhen Chen,Xiaohui Xie
8+阅读 · 2018年2月3日
Fahim Irfan Alam,Jun Zhou,Alan Wee-Chung Liew,Xiuping Jia,Jocelyn Chanussot,Yongsheng Gao
10+阅读 · 2017年12月27日
Ke Zhang,Liru Guo,Ce Gao,Zhenbing Zhao
3+阅读 · 2017年10月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
5+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
RL 真经
CreateAMind
4+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
26+阅读 · 2017年9月11日
Top