A coinjoin protocol aims to increase transactional privacy for Bitcoin and Bitcoin-like blockchains via collaborative transactions, by violating assumptions behind common analysis heuristics. Estimating the resulting privacy gain is a crucial yet unsolved problem due to a range of influencing factors and large computational complexity. We adapt the BlockSci on-chain analysis software to coinjoin transactions, demonstrating a significant (10-50%) average post-mix anonymity set size decrease for all three major designs with a central coordinator: Whirlpool, Wasabi 1.x, and Wasabi 2.x. The decrease is highest during the first day and negligible after one year from a coinjoin creation. Moreover, we design a precise, parallelizable privacy estimation method, which takes into account coinjoin fees, implementation-specific limitations and users' post-mix behavior. We evaluate our method in detail on a set of emulated and real-world Wasabi 2.x coinjoins and extrapolate to its largest real-world coinjoins with hundreds of inputs and outputs. We conclude that despite the users' undesirable post-mix behavior, correctly attributing the coins to their owners is still very difficult, even with our improved analysis algorithm.


翻译:Coinjoin协议旨在通过协作交易违反常见分析启发式方法背后的假设,从而增强比特币及类比特币区块链的交易隐私性。由于影响因素众多且计算复杂度高,评估由此产生的隐私增益是一个关键但尚未解决的问题。我们调整了BlockSci链上分析软件以适用于coinjoin交易,证明对于三种具有中心协调器的主流设计——Whirlpool、Wasabi 1.x和Wasabi 2.x,其混合后匿名集平均规模均出现显著下降(10-50%)。这种下降在交易创建后首日最为明显,一年后可忽略不计。此外,我们设计了一种可并行化的精确隐私评估方法,该方法综合考虑了coinjoin手续费、实现特定限制以及用户混合后行为。我们在模拟和真实世界的Wasabi 2.x coinjoin数据集上对该方法进行了详细评估,并将其推广至具有数百个输入输出的最大规模真实coinjoin交易。我们的结论表明:尽管用户存在不理想的混合后行为,但即使采用我们改进的分析算法,将代币准确归属至其所有者仍然极为困难。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员