A coinjoin protocol aims to increase transactional privacy for Bitcoin and Bitcoin-like blockchains via collaborative transactions, by violating assumptions behind common analysis heuristics. Estimating the resulting privacy gain is a crucial yet unsolved problem due to a range of influencing factors and large computational complexity. We adapt the BlockSci on-chain analysis software to coinjoin transactions, demonstrating a significant (10-50%) average post-mix anonymity set size decrease for all three major designs with a central coordinator: Whirlpool, Wasabi 1.x, and Wasabi 2.x. The decrease is highest during the first day and negligible after one year from a coinjoin creation. Moreover, we design a precise, parallelizable privacy estimation method, which takes into account coinjoin fees, implementation-specific limitations and users' post-mix behavior. We evaluate our method in detail on a set of emulated and real-world Wasabi 2.x coinjoins and extrapolate to its largest real-world coinjoins with hundreds of inputs and outputs. We conclude that despite the users' undesirable post-mix behavior, correctly attributing the coins to their owners is still very difficult, even with our improved analysis algorithm.
翻译:Coinjoin协议旨在通过协作交易违反常见分析启发式方法背后的假设,从而增强比特币及类比特币区块链的交易隐私性。由于影响因素众多且计算复杂度高,评估由此产生的隐私增益是一个关键但尚未解决的问题。我们调整了BlockSci链上分析软件以适用于coinjoin交易,证明对于三种具有中心协调器的主流设计——Whirlpool、Wasabi 1.x和Wasabi 2.x,其混合后匿名集平均规模均出现显著下降(10-50%)。这种下降在交易创建后首日最为明显,一年后可忽略不计。此外,我们设计了一种可并行化的精确隐私评估方法,该方法综合考虑了coinjoin手续费、实现特定限制以及用户混合后行为。我们在模拟和真实世界的Wasabi 2.x coinjoin数据集上对该方法进行了详细评估,并将其推广至具有数百个输入输出的最大规模真实coinjoin交易。我们的结论表明:尽管用户存在不理想的混合后行为,但即使采用我们改进的分析算法,将代币准确归属至其所有者仍然极为困难。