Group control of connected and autonomous vehicles on automated highways is challenging for the advanced driver assistance systems (ADAS) and the automated driving systems (ADS). This paper investigates the differential game-based approach to autonomous convoy control with the aim of deployment on automated highways. Under the non-cooperative differential games, the coupled vehicles make their decisions independently while their states are interdependent. The receding horizon Nash equilibrium of the linear-quadratic differential game provides the convoy a distributed state-feedback control strategy. This approach suffers a fundamental issue that neither a Nash equilibrium's existence nor the uniqueness is guaranteed. We convert the individual dynamics-based differential game to a relative dynamics-based optimal control problem that carries all the features of the differential game. The existence of a unique Nash control under the differential game corresponds to a unique solution to the optimal control problem. The latter is shown, as well as the asymptotic stability of the closed-loop system. Simulations illustrate the effectiveness of the presented convey control scheme and how it well suits automated highway driving scenarios.


翻译:自动高速公路上连接和自主车辆的分组控制对先进的驾驶协助系统(ADAS)和自动驾驶系统(ADS)具有挑战性。本文调查了以不同游戏为基础的独立车队控制方法,目的是在自动化高速公路上部署。在不合作的差别游戏下,交配车辆独立作出决定,而其状态是相互依存的。线性-赤道差异游戏的退缩地平线纳什平衡为车队提供了分散的州-区-区差异控制战略。这一方法遇到一个根本问题,既不能保证纳什平衡的存在,也不能保证其独特性。我们将个人动态差异游戏转化为一个带有差别游戏所有特点的相对动态最佳控制问题。在差别游戏下存在独特的纳什控制,相当于最佳控制问题的独特解决办法。后者显示,以及封闭式环系统的无症状稳定性。模拟说明了所提出的传送控制计划的有效性及其如何适合自动化高速公路驾驶方案。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
26+阅读 · 2021年6月2日
【2020新书】Python文本分析,104页pdf
专知会员服务
96+阅读 · 2020年12月23日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
272+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年6月2日
【2020新书】Python文本分析,104页pdf
专知会员服务
96+阅读 · 2020年12月23日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
272+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员