Attention-based Neural Networks (NN) have demonstrated their effectiveness in accurate memory access prediction, an essential step in data prefetching. However, the substantial computational overheads associated with these models result in high inference latency, limiting their feasibility as practical prefetchers. To close the gap, we propose a new approach based on tabularization that significantly reduces model complexity and inference latency without sacrificing prediction accuracy. Our novel tabularization methodology takes as input a distilled, yet highly accurate attention-based model for memory access prediction and efficiently converts its expensive matrix multiplications into a hierarchy of fast table lookups. As an exemplar of the above approach, we develop DART, a prefetcher comprised of a simple hierarchy of tables. With a modest 0.09 drop in F1-score, DART reduces 99.99% of arithmetic operations from the large attention-based model and 91.83% from the distilled model. DART accelerates the large model inference by 170x and the distilled model by 9.4x. DART has comparable latency and storage costs as state-of-the-art rule-based prefetcher BO but surpasses it by 6.1% in IPC improvement. DART outperforms state-of-the-art NN-based prefetchers TransFetch by 33.1% and Voyager by 37.2% in terms of IPC improvement, primarily due to its low prefetching latency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Google 发布的面向结构化 web 应用的开语言。 dartlang.org
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员