Traffic signs recognition (TSR) plays an essential role in assistant driving and intelligent transportation system. However, the noise of complex environment may lead to motion-blur or occlusion problems, which raise the tough challenge to real-time recognition with high accuracy and robust. In this article, we propose IECES-network which with improved encoders and Siamese net. The three-stage approach of our method includes Efficient-CNN based encoders, Siamese backbone and the fully-connected layers. We firstly use convolutional encoders to extract and encode the traffic sign features of augmented training samples and standard images. Then, we design the Siamese neural network with Efficient-CNN based encoder and contrastive loss function, which can be trained to improve the robustness of TSR problem when facing the samples of motion-blur and occlusion by computing the distance between inputs and templates. Additionally, the template branch of the proposed network can be stopped when executing the recognition tasks after training to raise the process speed of our real-time model, and alleviate the computational resource and parameter scale. Finally, we recombined the feature code and a fully-connected layer with SoftMax function to classify the codes of samples and recognize the category of traffic signs. The results of experiments on the Tsinghua-Tencent 100K dataset and the German Traffic Sign Recognition Benchmark dataset demonstrate the performance of the proposed IECESnetwork. Compared with other state-of-the-art methods, in the case of motion-blur and occluded environment, the proposed method achieves competitive performance precision-recall and accuracy metric average is 88.1%, 86.43% and 86.1% with a 2.9M lightweight scale, respectively. Moreover, processing time of our model is 0.1s per frame, of which the speed is increased by 1.5 times compared with existing methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员