The high-resolution differential equation framework has been proven to be tailor-made for Nesterov's accelerated gradient descent method~(\texttt{NAG}) and its proximal correspondence -- the class of faster iterative shrinkage thresholding algorithms (FISTA). However, the systems of theories is not still complete, since the underdamped case ($r < 2$) has not been included. In this paper, based on the high-resolution differential equation framework, we construct the new Lyapunov functions for the underdamped case, which is motivated by the power of the time $t^{\gamma}$ or the iteration $k^{\gamma}$ in the mixed term. When the momentum parameter $r$ is $2$, the new Lyapunov functions are identical to the previous ones. These new proofs do not only include the convergence rate of the objective value previously obtained according to the low-resolution differential equation framework but also characterize the convergence rate of the minimal gradient norm square. All the convergence rates obtained for the underdamped case are continuously dependent on the parameter $r$. In addition, it is observed that the high-resolution differential equation approximately simulates the convergence behavior of~\texttt{NAG} for the critical case $r=-1$, while the low-resolution differential equation degenerates to the conservative Newton's equation. The high-resolution differential equation framework also theoretically characterizes the convergence rates, which are consistent with that obtained for the underdamped case with $r=-1$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员