An \emph{obstacle representation} of a graph $G$ consists of a set of polygonal obstacles and a drawing of $G$ as a \emph{visibility graph} with respect to the obstacles: vertices are mapped to points and edges to straight-line segments such that each edge avoids all obstacles whereas each non-edge intersects at least one obstacle. Obstacle representations have been investigated quite intensely over the last few years. Here we focus on \emph{outside-obstacle representations} that use only one obstacle in the outer face of the drawing. It is known that every outerplanar graph admits such a representation [Alpert, Koch, Laison; DCG 2010]. We strengthen this result by showing that every partial 2-tree has an outside-obstacle representation. We also consider a restricted version of outside-obstacle representations where the vertices lie on a regular polygon. We construct such regular representations for partial outerpaths, partial cactus graphs, and partial grids.
翻译:\ emph{ abstacle 代表 $G$ 的图形的 \ emph{ abstacle $G$ 由一组多边形障碍和绘制$G$作为 emph{visible 图} 构成 障碍 : 将脊椎绘制成点和边缘, 直线部分, 使每个边缘都避免所有障碍, 而每个非边缘的交叉点至少有一个障碍 。 在过去几年里, 对 障碍表示进行了非常深入的调查 。 在此我们只关注 \ emph{ outside- abstacle 代表 } 。 我们知道, 每张外形图都接受这样的代表 [Alpert, Koch, Laison; DCG 2010] 。 我们通过显示每个部分的2树都有外部孔表 来强化这一结果 。 我们还考虑在常规多边形上存在脊椎的外部角代表的有限版本 。 我们为部分外形、 部分仙子图和部分网格建这种定期的表示 。