The problem of Airwriting Recognition is focused on identifying letters written by movement of finger in free space. It is a type of gesture recognition where the dictionary corresponds to letters in a specific language. In particular, airwriting recognition using sensor data from wrist-worn devices can be used as a medium of user input for applications in Human-Computer Interaction (HCI). Recognition of in-air trajectories using such wrist-worn devices is limited in literature and forms the basis of the current work. In this paper, we propose an airwriting recognition framework by first encoding the time-series data obtained from a wearable Inertial Measurement Unit (IMU) on the wrist as images and then utilizing deep learning-based models for identifying the written alphabets. The signals recorded from 3-axis accelerometer and gyroscope in IMU are encoded as images using different techniques such as Self Similarity Matrix (SSM), Gramian Angular Field (GAF) and Markov Transition Field (MTF) to form two sets of 3-channel images. These are then fed to two separate classification models and letter prediction is made based on an average of the class conditional probabilities obtained from the two models. Several standard model architectures for image classification such as variants of ResNet, DenseNet, VGGNet, AlexNet and GoogleNet have been utilized. Experiments performed on two publicly available datasets demonstrate the efficacy of the proposed strategy. The code for our implementation will be made available at https://github.com/ayushayt/ImAiR.


翻译:空写识别问题侧重于识别在自由空间中用手指移动所写的字母。 它是一种姿态识别, 字典与特定语言中的字母相对应。 特别是, 使用手腕手写设备的传感器数据进行空写识别, 可以用作人类计算机互动应用的用户输入媒介。 使用手腕手动装置的空气轨迹的识别在文献和当前工作基础方面是有限的。 在本文中, 我们提出一个空写识别框架, 首先将手腕上的磨损性惰性测量股(IMU)获得的时间序列数据编码为图像, 然后利用深层次的学习模型来识别书面字母。 从3轴加速计和陀螺仪中录下的信号可以被编码为图像, 使用自自相相似矩阵(SSSM)、格莱米角场(GAF)和Markov过渡场(MTF)等不同技术作为当前工作的基础。 本文中, 我们建议将手腕上磨损性惯性惯性惯性测量股/网络图像的两套分类模型和字母预测, 以两种不同的模型为基础, 将用来对数据库进行虚拟化模型的模型和图像的模型进行。 将用来对数据库进行。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
16+阅读 · 2021年1月27日
Image Segmentation Using Deep Learning: A Survey
Arxiv
47+阅读 · 2020年1月15日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关论文
Arxiv
0+阅读 · 2022年10月21日
Arxiv
16+阅读 · 2021年1月27日
Image Segmentation Using Deep Learning: A Survey
Arxiv
47+阅读 · 2020年1月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员