Mobile Phone Agents (MPAs) have emerged as a promising research direction due to their broad applicability across diverse scenarios. While Multimodal Large Language Models (MLLMs) serve as the foundation for MPAs, their effectiveness in handling multiple mobile phone tasks simultaneously remains limited. Although multitask supervised fine-tuning (SFT) is widely adopted for multitask learning, existing approaches struggle to determine optimal training data compositions for peak performance. To address this challenge, we propose DaMo (Data Mixture Optimizer) - a novel solution employing a trainable network that predicts optimal data mixtures by forecasting downstream task performance for any given dataset ratio. To support comprehensive evaluation, we introduce PhoneAgentBench, the first specialized benchmark to evaluate MLLMs on multimodal mobile phone tasks, comprising 1235 QA pairs spanning diverse real-world industrial mobile application scenarios. Demonstrating strong predictive capability (R^2=0.81) in small-scale pilot experiments, DaMo efficiently extrapolates optimal data mixing configurations. Our results show DaMo achieves a 3.38% performance improvement on PhoneAgentBench compared to alternative methods. Furthermore, extensive experiments across established benchmarks including BFCL-v3, MME-Reasoning, MME-Perception, and OCRBench reveal DaMo's superior generalization, outperforming other approaches by 2.57% in terms of average score. When used solely for MLLM optimization on the BFCL-v3 task, DaMo improves the metrics by 12.47% than other methods. Notably, DaMo maintains robust scalability, preserving its effectiveness when applied to other model architectures. The code and dataset are available at https://github.com/OPPO-Mente-Lab/DaMo.git
翻译:移动手机智能体因其在多样化场景中的广泛适用性而成为一个前景广阔的研究方向。尽管多模态大语言模型是移动手机智能体的基础,但其在同时处理多项手机任务方面的有效性仍然有限。虽然多任务监督微调被广泛用于多任务学习,但现有方法难以确定实现峰值性能的最佳训练数据组合。为应对这一挑战,我们提出了DaMo(数据混合优化器)——一种新颖的解决方案,它采用一个可训练网络,通过预测任意给定数据集比例下的下游任务性能来推断最优数据混合方案。为支持全面评估,我们引入了PhoneAgentBench,这是首个专门用于评估多模态大语言模型在移动手机多模态任务上性能的基准测试,包含涵盖多样化真实世界工业移动应用场景的1235个问答对。在小规模试点实验中,DaMo展现出强大的预测能力(R^2=0.81),能够高效地推断出最优数据混合配置。我们的结果表明,与其他方法相比,DaMo在PhoneAgentBench上的性能提升了3.38%。此外,在包括BFCL-v3、MME-Reasoning、MME-Perception和OCRBench在内的多个成熟基准测试上的广泛实验表明,DaMo具有卓越的泛化能力,在平均得分上以2.57%的优势超越其他方法。当仅用于BFCL-v3任务上的多模态大语言模型优化时,DaMo将相关指标提升了12.47%,优于其他方法。值得注意的是,DaMo保持了强大的可扩展性,在应用于其他模型架构时仍能保持其有效性。代码和数据集可在 https://github.com/OPPO-Mente-Lab/DaMo.git 获取。