In the human vision system, top-down attention plays a crucial role in perception, wherein the brain initially performs an overall but rough scene analysis to extract salient cues (i.e., overview first), followed by a finer-grained examination to make more accurate judgments (i.e., look closely next). However, recent efforts in ConvNet designs primarily focused on increasing kernel size to obtain a larger receptive field without considering this crucial biomimetic mechanism to further improve performance. To this end, we propose a novel pure ConvNet vision backbone, termed OverLoCK, which is carefully devised from both the architecture and mixer perspectives. Specifically, we introduce a biomimetic Deep-stage Decomposition Strategy (DDS) that fuses semantically meaningful context representations into middle and deep layers by providing dynamic top-down context guidance at both feature and kernel weight levels. To fully unleash the power of top-down context guidance, we further propose a novel \textbf{Cont}ext-\textbf{Mix}ing Dynamic Convolution (ContMix) that effectively models long-range dependencies while preserving inherent local inductive biases even when the input resolution increases. These properties are absent in previous convolutions. With the support from both DDS and ContMix, our OverLoCK exhibits notable performance improvement over existing methods. For instance, OverLoCK-T achieves a Top-1 accuracy of 84.2\%, significantly surpassing ConvNeXt-B while only using around one-third of the FLOPs/parameters. On object detection with Cascade Mask R-CNN, our OverLoCK-S surpasses MogaNet-B by a significant 1\% in AP$^b$. On semantic segmentation with UperNet, our OverLoCK-T remarkably improves UniRepLKNet-T by 1.7\% in mIoU. Code is publicly available at https://github.com/LMMMEng/OverLoCK.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
34+阅读 · 2022年12月20日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员