The autonomy and contextual complexity of LLM-based agents render traditional access control (AC) mechanisms insufficient. Static, rule-based systems designed for predictable environments are fundamentally ill-equipped to manage the dynamic information flows inherent in agentic interactions. This position paper argues for a paradigm shift from binary access control to a more sophisticated model of information governance, positing that the core challenge is not merely about permission, but about governing the flow of information. We introduce Agent Access Control (AAC), a novel framework that reframes AC as a dynamic, context-aware process of information flow governance. AAC operates on two core modules: (1) multi-dimensional contextual evaluation, which assesses not just identity but also relationships, scenarios, and norms; and (2) adaptive response formulation, which moves beyond simple allow/deny decisions to shape information through redaction, summarization, and paraphrasing. This vision, powered by a dedicated AC reasoning engine, aims to bridge the gap between human-like nuanced judgment and scalable Al safety, proposing a new conceptual lens for future research in trustworthy agent design.
翻译:基于大语言模型(LLM)的智能体所具有的自主性和情境复杂性,使得传统的访问控制(AC)机制显得不足。为可预测环境设计的静态、基于规则的系统,从根本上无法有效管理智能体交互中固有的动态信息流。本立场论文主张,需要从二元的访问控制范式转向更复杂的信息治理模型,其核心论点在于:核心挑战不仅关乎权限,更在于治理信息流。我们提出了智能体访问控制(AAC)这一新颖框架,它将AC重新定义为一种动态的、情境感知的信息流治理过程。AAC基于两个核心模块运行:(1)多维情境评估,不仅评估身份,还评估关系、场景和规范;(2)自适应响应制定,超越简单的允许/拒绝决策,通过编辑、摘要和转述等方式来塑造信息。这一愿景由一个专用的AC推理引擎驱动,旨在弥合类人细微判断与可扩展的AI安全性之间的鸿沟,为未来可信智能体设计的研究提出了一个新的概念视角。