The Random Batch Method (RBM) [S. Jin, L. Li and J.-G. Liu, Random Batch Methods (RBM) for interacting particle systems, J. Comput. Phys. 400 (2020) 108877] is not only an efficient algorithm for simulating interacting particle systems, but also a randomly switching networked model for interacting particle system. This work investigates two RBM variants (RBM-r and RBM-1) applied to the Cucker-Smale flocking model. We establish the asymptotic emergence of global flocking and derive corresponding error estimates. By introducing a crucial auxiliary system and leveraging the intrinsic characteristics of the Cucker-Smale model, and under suitable conditions on the force, our estimates are uniform in both time and particle numbers. In the case of RBM-1, our estimates are sharper than those in Ha et al. (2021). Additionally, we provide numerical simulations to validate our analytical results.
翻译:随机批处理方法(RBM)[S. Jin, L. Li 和 J.-G. Liu, Random Batch Methods (RBM) for interacting particle systems, J. Comput. Phys. 400 (2020) 108877] 不仅是模拟相互作用粒子系统的高效算法,也是相互作用粒子系统的随机切换网络模型。本研究探讨了应用于Cucker-Smale集群模型的两个RBM变体(RBM-r 和 RBM-1)。我们建立了全局集群的渐近涌现性,并推导了相应的误差估计。通过引入关键辅助系统、利用Cucker-Smale模型的内在特性,并在作用力满足适当条件下,我们的估计在时间和粒子数上均具有一致性。对于RBM-1,我们的估计比Ha等人(2021)的结果更为精确。此外,我们提供了数值模拟以验证理论分析结果。