Large language models (LLMs) are increasingly deployed as conversational tutors in STEM education, yet most systems still rely on a single LLM with a static retrieval-augmented generation (RAG) pipeline over course materials. This design struggles in complex domains such as digital signal processing (DSP), where tutors must maintain coherent long-term student models, manage heterogeneous knowledge bases, and adapt teaching strategies over extended interactions. We argue that retrieval, memory, and control should be treated as a coupled cognitive evolution process. We instantiate this view in CogEvo-Edu, a hierarchical educational multi-agent system comprising a Cognitive Perception Layer (CPL), a Knowledge Evolution Layer (KEL), and a Meta-Control Layer (MCL). CPL maintains dual memories and performs confidence-weighted consolidation to build structured, self-correcting student profiles under limited context. KEL assigns each knowledge chunk a spatiotemporal value that drives activation, semantic compression, and forgetting. MCL formulates tutoring as hierarchical sequential decision making, orchestrating specialized agents and jointly adapting CPL/KEL hyperparameters via a dual inner--outer loop. To evaluate CogEvo-Edu, we construct DSP-EduBench, a vertical benchmark for DSP tutoring with heterogeneous resources, simulated student profiles, and long-horizon interaction scripts. Using a three-model LLM-as-a-Judge ensemble, CogEvo-Edu raises the overall score from 5.32 to 9.23 and improves all six indicators over static RAG, simple memory, and a single-agent variant, demonstrating the value of jointly evolving student profiles, knowledge bases, and teaching policies.


翻译:大型语言模型(LLMs)在STEM教育中越来越多地被部署为对话式辅导系统,然而大多数系统仍依赖单一LLM与课程材料的静态检索增强生成(RAG)流程。这种设计在复杂领域(如数字信号处理(DSP))中面临挑战,因为辅导系统需要维护连贯的长期学生模型、管理异构知识库,并在长期互动中调整教学策略。我们认为检索、记忆与控制应被视为一个耦合的认知演化过程。我们在CogEvo-Edu中实现了这一观点,这是一个分层教育多智能体系统,包含认知感知层(CPL)、知识演化层(KEL)和元控制层(MCL)。CPL维护双重记忆并执行置信度加权整合,以在有限上下文中构建结构化、自校正的学生画像。KEL为每个知识块分配时空价值,驱动激活、语义压缩与遗忘。MCL将辅导建模为分层序列决策过程,协调专用智能体并通过双内-外环联合调整CPL/KEL的超参数。为评估CogEvo-Edu,我们构建了DSP-EduBench,这是一个针对DSP辅导的垂直基准,包含异构资源、模拟学生画像和长程交互脚本。使用三模型LLM-as-a-Judge集成评估,CogEvo-Edu将总体得分从5.32提升至9.23,并在所有六个指标上优于静态RAG、简单记忆和单智能体变体,证明了联合演化学生画像、知识库与教学策略的价值。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员