Cone-beam CT (CBCT) employs a flat-panel detector to achieve three-dimensional imaging with high spatial resolution. However, CBCT is susceptible to scatter during data acquisition, which introduces CT value bias and reduced tissue contrast in the reconstructed images, ultimately degrading diagnostic accuracy. To address this issue, we propose a deep learning-based scatter artifact correction method inspired by physical prior knowledge. Leveraging the fact that the observed point scatter probability density distribution exhibits rotational symmetry in the projection domain. The method uses Gaussian Radial Basis Functions (RBF) to model the point scatter function and embeds it into the Kolmogorov-Arnold Networks (KAN) layer, which provides efficient nonlinear mapping capabilities for learning high-dimensional scatter features. By incorporating the physical characteristics of the scattered photon distribution together with the complex function mapping capacity of KAN, the model improves its ability to accurately represent scatter. The effectiveness of the method is validated through both synthetic and real-scan experiments. Experimental results show that the model can effectively correct the scatter artifacts in the reconstructed images and is superior to the current methods in terms of quantitative metrics.


翻译:锥束CT(CBCT)采用平板探测器实现高空间分辨率的三维成像。然而,CBCT在数据采集过程中易受散射影响,导致重建图像中出现CT值偏差和组织对比度降低,最终降低诊断准确性。为解决此问题,我们提出了一种基于深度学习的散射伪影校正方法,该方法受物理先验知识启发。利用观测到的点散射概率密度分布在投影域中呈现旋转对称性这一事实,该方法采用高斯径向基函数(RBF)对点散射函数进行建模,并将其嵌入到Kolmogorov-Arnold Networks(KAN)层中,该层为学习高维散射特征提供了高效的非线性映射能力。通过结合散射光子分布的物理特性与KAN的复杂函数映射能力,该模型提升了准确表征散射的能力。该方法的有效性通过合成实验和真实扫描实验得到验证。实验结果表明,该模型能有效校正重建图像中的散射伪影,且在定量指标上优于现有方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员