We present a threat modelling approach to represent changes to the attack paths through an Internet of Things (IoT) environment when the environment changes dynamically, i.e., when new devices are added or removed from the system or when whole sub-systems join or leave. The proposed approach investigates the propagation of threats using attack graphs. However, traditional attack graph approaches have been applied in static environments that do not continuously change such as the Enterprise networks, leading to static and usually very large attack graphs. In contrast, IoT environments are often characterised by dynamic change and interconnections; different topologies for different systems may interconnect with each other dynamically and outside the operator control. Such new interconnections lead to changes in the reachability amongst devices according to which their corresponding attack graphs change. This requires dynamic topology and attack graphs for threat and risk analysis. In this paper, we develop a threat modelling approach that cope with dynamic system changes that may occur in IoT environments and enables identifying attack paths whilst allowing for system dynamics. We develop dynamic topology and attack graphs that are able to cope with the changes in the IoT environment rapidly by maintaining their associated graphs. To motivate the work and illustrate our approach we introduce an example scenario based on healthcare systems. Our approach is implemented using a Graph Database Management Tool (GDBM) -- Neo4j -- which is a popular tool for mapping, visualising and querying the graphs of highly connected data, and is efficient in providing a rapid threat modelling mechanism, which makes it suitable for capturing security changes in the dynamic IoT environment.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员