In this work we make progress in understanding the relationship between learning models with access to entangled, separable and statistical measurements in the quantum statistical query (QSQ) model. To this end, we show the following results. $\textbf{Entangled versus separable measurements.}$ The goal here is to learn an unknown $f$ from the concept class $C\subseteq \{f:\{0,1\}^n\rightarrow [k]\}$ given copies of $\frac{1}{\sqrt{2^n}}\sum_x \vert x,f(x)\rangle$. We show that, if $T$ copies suffice to learn $f$ using entangled measurements, then $O(nT^2)$ copies suffice to learn $f$ using just separable measurements. $\textbf{Entangled versus statistical measurements}$ The goal here is to learn a function $f \in C$ given access to separable measurements and statistical measurements. We exhibit a class $C$ that gives an exponential separation between QSQ learning and quantum learning with entangled measurements (even in the presence of noise). This proves the "quantum analogue" of the seminal result of Blum et al. [BKW'03]. that separates classical SQ and PAC learning with classification noise. $\textbf{QSQ lower bounds for learning states.}$ We introduce a quantum statistical query dimension (QSD), which we use to give lower bounds on the QSQ learning. With this we prove superpolynomial QSQ lower bounds for testing purity, shadow tomography, Abelian hidden subgroup problem, degree-$2$ functions, planted bi-clique states and output states of Clifford circuits of depth $\textsf{polylog}(n)$. $\textbf{Further applications.}$ We give and $\textit{unconditional}$ separation between weak and strong error mitigation and prove lower bounds for learning distributions in the QSQ model. Prior works by Quek et al. [QFK+'22], Hinsche et al. [HIN+'22], and Nietner et al. [NIS+'23] proved the analogous results $\textit{assuming}$ diagonal measurements and our work removes this assumption.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年7月27日
Arxiv
0+阅读 · 2023年7月26日
Arxiv
10+阅读 · 2022年3月18日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
87+阅读 · 2021年5月17日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员