Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models that are widely used in modern educational, psychological, social and biological sciences. A key component of CDMs is a binary $Q$-matrix characterizing the dependence structure between the items and the latent attributes. Additionally, researchers also assume in many applications certain hierarchical structures among the latent attributes to characterize their dependence. In most CDM applications, the attribute-attribute hierarchical structures, the item-attribute $Q$-matrix, the item-level diagnostic model, as well as the number of latent attributes, need to be fully or partially pre-specified, which however may be subjective and misspecified as noted by many recent studies. This paper considers the problem of jointly learning these latent and hierarchical structures in CDMs from observed data with minimal model assumptions. Specifically, a penalized likelihood approach is proposed to select the number of attributes and estimate the latent and hierarchical structures simultaneously. An efficient expectation-maximization (EM) algorithm and a latent structure recovery algorithm are developed, and statistical consistency theory is also established under mild conditions. The good performance of the proposed method is illustrated by simulation studies and a real data application in educational assessment.


翻译:在现代教育、心理、社会和生物科学中广泛使用的离散潜伏变量模型(CDM)是一个特殊组合,由在现代教育、心理、社会和生物科学中广泛使用的离散潜伏变量模型组成,清洁发展机制的一个关键组成部分是一个二进制的基数,它说明物品与潜在属性之间的依赖性结构;此外,在许多应用中,研究人员还假定在潜在属性中存在某些等级结构,以说明其依赖性;在大多数清洁发展机制应用中,属性归属等级结构、物品分配基数(Q$-矩阵)、项目一级诊断模型以及潜在属性的数量需要完全或部分事先确定,但如最近许多研究所指出,这可能是主观的和错误的描述;本文件考虑了从观察到的数据中共同学习清洁发展机制中的这些潜在和等级结构的问题,并附有最低限度的模型假设;具体地说,建议采用一种惩罚性的可能性办法,同时选择属性数量并估计潜伏和等级结构;在温和的条件下,还制定了高效率的预期-最大度算法和潜在结构恢复算法,并且还确立了统计一致性理论。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员