We present a new framework to derandomise certain Markov chain Monte Carlo (MCMC) algorithms. As in MCMC, we first reduce counting problems to sampling from a sequence of marginal distributions. For the latter task, we introduce a method called coupling towards the past that can, in logarithmic time, evaluate one or a constant number of variables from a stationary Markov chain state. Since there are at most logarithmic random choices, this leads to very simple derandomisation. We provide two applications of this framework, namely efficient deterministic approximate counting algorithms for hypergraph independent sets and hypergraph colourings, under local lemma type conditions matching, up to lower order factors, their state-of-the-art randomised counterparts.
翻译:我们提出了一种新的框架,用于去随机化某些马尔可夫链蒙特卡罗(MCMC)算法。与MCMC相似,我们首先将计数问题归约为从一系列边缘分布中进行采样。对于后一项任务,我们介绍了一种称为“过去耦合”的方法,它可以在对于一个平稳马尔可夫链状态,以对数时间内评估一个或一定数量的变量。由于随机选择最多是对数级别的,这导致了非常简单的去随机化方法。我们提供了这种框架的两个应用,即在符合局部引理类型条件的情况下,超图独立集和超图着色的有效确定性近似计数算法,这匹配,除了低阶因子,它们的最先进的随机对应物。