Quantifying similarities between time series in a meaningful way remains a challenge in time series analysis, despite many advances in the field. Most real-world solutions still rely on a few popular measures, such as Euclidean Distance (EuD), Longest Common Subsequence (LCSS), and Dynamic Time Warping (DTW). The strengths and weaknesses of these measures have been studied extensively, and incremental improvements have been proposed. In this study, however, we present a different similarity measure that fuses the notion of Dubuc's variation from fractal analysis with the Intersection-over-Union (IoU) measure which is widely used in object recognition (also known as the Jaccard Index). In this proof-of-concept paper, we introduce the Multiscale Dubuc Distance (MDD) measure and prove that it is a metric, possessing desirable properties such as the triangle inequality. We use 95 datasets from the UCR Time Series Classification Archive to compare MDD's performance with EuD, LCSS, and DTW. Our experiments show that MDD's overall success, without any case-specific customization, is comparable to DTW with optimized window sizes per dataset. We also highlight several datasets where MDD's performance improves significantly when its single parameter is customized. This customization serves as a powerful tool for gauging MDD's sensitivity to noise. Lastly, we show that MDD's running time is linear in the length of the time series, which is crucial for real-world applications involving very large datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2022年9月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员