Function calling is a fundamental capability of today's large language models, but sequential function calling posed efficiency problems. Recent studies have proposed to request function calls with parallelism support in order to alleviate this issue. However, they either delegate the concurrent function calls to users for execution which are conversely executed sequentially, or overlook the relations among various function calls, rending limited efficiency. This paper introduces LLMOrch, an advanced framework for automated, parallel function calling in large language models. The key principle behind LLMOrch is to identify an available processor to execute a function call while preventing any single processor from becoming overburdened. To this end, LLMOrch models the data relations (i.e., def-use) among different function calls and coordinates their executions by their control relations (i.e., mutual-exclusion) as well as the working status of the underlying processors. When comparing with state-of-the-art techniques, LLMOrch demonstrated comparable efficiency improvements in orchestrating I/O-intensive functions, while significantly outperforming (2$\times$) them with compute-intensive functions. LLMOrch's performance even showed a linear correlation to the number of allocated processors. We believe that these results highlight the potential of LLMOrch as an efficient solution for parallel function orchestration in the context of large language models.


翻译:函数调用是当前大语言模型的核心能力之一,但顺序函数调用存在效率瓶颈。近期研究提出通过支持并行调用来缓解此问题,然而现有方法要么将并发函数调用交由用户顺序执行,要么忽略不同函数调用间的关联,导致效率提升有限。本文提出LLMOrch,一种面向大语言模型的自动化并行函数调用框架。其核心原理是在避免单个处理器过载的前提下,为函数调用分配合适的可用处理器。为此,LLMOrch通过数据关系(即定义-使用关系)建模函数调用间的依赖,并基于控制关系(即互斥关系)与底层处理器工作状态协调执行过程。与前沿技术相比,LLMOrch在编排I/O密集型函数时展现出相当的效率提升,而在处理计算密集型函数时性能显著超越现有方法(达2倍)。LLMOrch的性能表现与分配的处理器数量呈线性相关。这些结果表明LLMOrch有望成为大语言模型并行函数编排的高效解决方案。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
17+阅读 · 2019年3月28日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Arxiv
15+阅读 · 2018年2月4日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员