We propose a mathematically principled PDE gradient flow framework for distributionally robust optimization (DRO). Exploiting the recent advances in the intersection of Markov Chain Monte Carlo sampling and gradient flow theory, we show that our theoretical framework can be implemented as practical algorithms for sampling from worst-case distributions and, consequently, DRO. While numerous previous works have proposed various reformulation techniques and iterative algorithms, we contribute a sound gradient flow view of the distributional optimization that can be used to construct new algorithms. As an example of applications, we solve a class of Wasserstein and Sinkhorn DRO problems using the recently-discovered Wasserstein Fisher-Rao and Stein variational gradient flows. Notably, we also show some simple reductions of our framework recover exactly previously proposed popular DRO methods, and provide new insights into their theoretical limit and optimization dynamics. Numerical studies based on stochastic gradient descent provide empirical backing for our theoretical findings.
翻译:我们提出了一种基于偏微分方程梯度流理论的数学原理框架,用于分布鲁棒优化。利用马尔可夫链蒙特卡洛采样与梯度流理论交叉领域的最新进展,我们证明了该理论框架可转化为从最坏情况分布采样的实用算法,并进而实现分布鲁棒优化。尽管已有大量研究提出了多种重构技术与迭代算法,我们贡献了分布优化的严格梯度流视角,可用于构建新算法。作为应用示例,我们采用最新发现的Wasserstein Fisher-Rao梯度流与Stein变分梯度流,求解了一类Wasserstein与Sinkhorn分布鲁棒优化问题。值得注意的是,我们通过框架的简单约化可精确还原先前提出的主流分布鲁棒优化方法,并为其理论极限与优化动力学提供新见解。基于随机梯度下降的数值研究为理论发现提供了实证支持。