Diffusion magnetic resonance imaging (dMRI) enables non-invasive investigation of tissue microstructure. The Standard Model (SM) of white matter aims to disentangle dMRI signal contributions from intra- and extra-axonal water compartments. However, due to the model its high-dimensional nature, accurately estimating its parameters poses a complex problem and remains an active field of research, in which different (machine learning) strategies have been proposed. This work introduces an estimation framework based on implicit neural representations (INRs), which incorporate spatial regularization through the sinusoidal encoding of the input coordinates. The INR method is evaluated on both synthetic and in vivo datasets and compared to existing methods. Results demonstrate superior accuracy of the INR method in estimating SM parameters, particularly in low signal-to-noise conditions. Additionally, spatial upsampling of the INR can represent the underlying dataset anatomically plausibly in a continuous way. The INR is self-supervised, eliminating the need for labeled training data. It achieves fast inference, is robust to noise, supports joint estimation of SM kernel parameters and the fiber orientation distribution function with spherical harmonics orders up to at least 8, and accommodates gradient non-uniformity corrections. The combination of these properties positions INRs as a potentially important tool for analyzing and interpreting diffusion MRI data.


翻译:扩散磁共振成像(dMRI)能够实现对组织微结构的无创探查。白质标准模型(SM)旨在分离dMRI信号中轴突内与轴突外水分区间的贡献。然而,由于该模型的高维特性,精确估计其参数成为一个复杂问题,目前仍是研究热点领域,已有多种(机器学习)策略被提出。本研究提出了一种基于隐式神经表征(INR)的估计框架,该框架通过输入坐标的正弦编码融入了空间正则化。INR方法在合成数据集和活体数据集上进行了评估,并与现有方法进行了比较。结果表明,INR方法在估计SM参数方面具有更高的准确性,尤其在低信噪比条件下。此外,INR的空间上采样能够以连续的方式在解剖学上合理地表示底层数据集。INR是自监督的,无需标记的训练数据。它实现了快速推理,对噪声具有鲁棒性,支持SM核参数与纤维取向分布函数(球谐函数阶数至少可达8阶)的联合估计,并能适应梯度不均匀性校正。这些特性的结合使INR成为分析和解释扩散MRI数据的一个潜在重要工具。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员