Poverty is a multifaceted phenomenon linked to the lack of capabilities of households to earn a sustainable livelihood, increasingly being assessed using multidimensional indicators. Its spatial pattern depends on social, economic, political, and regional variables. Artificial intelligence has shown immense scope in analyzing the complexities and nuances of poverty. The proposed project aims to examine the poverty situation of rural India for the period of 1990-2022 based on the quality of life and livelihood indicators. The districts will be classified into `advanced', `catching up', `falling behind', and `lagged' regions. The project proposes to integrate multiple data sources, including conventional national-level large sample household surveys, census surveys, and proxy variables like daytime, and nighttime data from satellite images, and communication networks, to name a few, to provide a comprehensive view of poverty at the district level. The project also intends to examine causation and longitudinal analysis to examine the reasons for poverty. Poverty and inequality could be widening in developing countries due to demographic and growth-agglomerating policies. Therefore, targeting the lagging regions and the vulnerable population is essential to eradicate poverty and improve the quality of life to achieve the goal of `zero poverty'. Thus, the study also focuses on the districts with a higher share of the marginal section of the population compared to the national average to trace the performance of development indicators and their association with poverty in these regions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2023年6月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员