The State of Machine Learning Frameworks in 2019

In 2019, the war for ML frameworks has two remaining main contenders: PyTorch and TensorFlow. My analysis suggests that researchers are abandoning TensorFlow and flocking to PyTorch in droves. Meanwhile in industry, Tensorflow is currently the platform of choice, but that may not be true for long.

成为VIP会员查看完整内容
0
21

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

When I started out, I had a strong quantitative background (chemical engineering undergrad, was taking PhD courses in chemical engineering) and some functional skills in programming. From there, I first dove deep into one type of machine learning (Gaussian processes) along with general ML practice (how to set up ML experiments in order to evaluate your models) because that was what I needed for my project. I learned mostly online and by reading papers, but I also took one class on data analysis for biologists that wasn’t ML-focused but did cover programming and statistical thinking. Later, I took a linear algebra class, an ML survey class, and an advanced topics class on structured learning at Caltech. Those helped me obtain a broad knowledge of ML, and then I’ve gained deeper understandings of some subfields that interest me or are especially relevant by reading papers closely (chasing down references and anything I don’t understand and/or implementing the core algorithms myself).

成为VIP会员查看完整内容
0
30

Real-world applications often combine learning and optimization problems on graphs. For instance, our objective may be to cluster the graph in order to detect meaningful communities (or solve other common graph optimization problems such as facility location, maxcut, and so on). However, graphs or related attributes are often only partially observed, introducing learning problems such as link prediction which must be solved prior to optimization. We propose an approach to integrate a differentiable proxy for common graph optimization problems into training of machine learning models for tasks such as link prediction. This allows the model to focus specifically on the downstream task that its predictions will be used for. Experimental results show that our end-to-end system obtains better performance on example optimization tasks than can be obtained by combining state of the art link prediction methods with expert-designed graph optimization algorithms.

0
4
下载
预览

Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

0
6
下载
预览

As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.

0
10
下载
预览
小贴士
相关VIP内容
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
54+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
30+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
16+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
41+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
22+阅读 · 2019年9月24日
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
3+阅读 · 2019年10月11日
年度大盘点:机器学习开源项目及框架
云栖社区
3+阅读 · 2018年12月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
12+阅读 · 2018年10月30日
Python机器学习教程资料/代码
机器学习研究会
5+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【回顾】PyTorch 简介
AI研习社
8+阅读 · 2017年10月29日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
5+阅读 · 2017年8月23日
相关论文
Shangwen Lv,Yuechen Wang,Daya Guo,Duyu Tang,Nan Duan,Fuqing Zhu,Ming Gong,Linjun Shou,Ryan Ma,Daxin Jiang,Guihong Cao,Ming Zhou,Songlin Hu
9+阅读 · 2020年4月12日
Bryan Wilder,Eric Ewing,Bistra Dilkina,Milind Tambe
4+阅读 · 2019年5月31日
Taking Human out of Learning Applications: A Survey on Automated Machine Learning
Quanming Yao,Mengshuo Wang,Yuqiang Chen,Wenyuan Dai,Hu Yi-Qi,Li Yu-Feng,Tu Wei-Wei,Yang Qiang,Yu Yang
10+阅读 · 2019年1月17日
Peter W. Battaglia,Jessica B. Hamrick,Victor Bapst,Alvaro Sanchez-Gonzalez,Vinicius Zambaldi,Mateusz Malinowski,Andrea Tacchetti,David Raposo,Adam Santoro,Ryan Faulkner,Caglar Gulcehre,Francis Song,Andrew Ballard,Justin Gilmer,George Dahl,Ashish Vaswani,Kelsey Allen,Charles Nash,Victoria Langston,Chris Dyer,Nicolas Heess,Daan Wierstra,Pushmeet Kohli,Matt Botvinick,Oriol Vinyals,Yujia Li,Razvan Pascanu
6+阅读 · 2018年10月17日
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo,Lu Cheng,Jundong Li,P. Richard Hahn,Huan Liu
7+阅读 · 2018年9月25日
A Survey on Deep Transfer Learning
Chuanqi Tan,Fuchun Sun,Tao Kong,Wenchang Zhang,Chao Yang,Chunfang Liu
10+阅读 · 2018年8月6日
Andreas Kamilaris,Francesc X. Prenafeta-Boldu
7+阅读 · 2018年7月31日
Yeonwoo Jeong,Hyun Oh Song
4+阅读 · 2018年6月12日
Hemayet Ahmed Chowdhury,Tanvir Alam Nibir,Md. Saiful Islam
8+阅读 · 2018年3月22日
Zuxuan Wu,Ting Yao,Yanwei Fu,Yu-Gang Jiang
8+阅读 · 2018年2月22日
Top