In this paper, a mode decomposition (MD) method for degenerated modes has been studied. Convolution neural network (CNN) has been applied for image training and predicting the mode coefficients. Four-fold degenerated $LP_{11}$ series has been the target to be decomposed. Multiple images are regarded as an input to decompose the degenerate modes. Total of seven different images, including the full original near-field image, and images after linear polarizers of four directions (0$^\circ$, 45$^\circ$, 90$^\circ$, and 135$^\circ$), and images after two circular polarizers (right-handed and left-handed) has been considered for training, validation, and test. The output label of the model has been chosen as the real and imaginary components of the mode coefficient, and the loss function has been selected to be the root-mean-square (RMS) of the labels. The RMS and mean-absolute-error (MAE) of the label, intensity, phase, and field correlation between the actual and predicted values have been selected to be the metrics to evaluate the CNN model. The CNN model has been trained with 100,000 three-dimensional images with depths of three, four, and seven. The performance of the trained model was evaluated via 10,000 test samples with four sets of images - images after three linear polarizers (0$^\circ$, 45$^\circ$, 90$^\circ$) and image after right-handed circular polarizer - showed 0.0634 of label RMS, 0.0292 of intensity RMS, 0.1867 rad of phase MAE, and 0.9978 of average field correlation. The performance of 4 image sets showed at least 50.68\% of performance enhancement compared to models considering only images after linear polarizers.


翻译:在本文中,已经研究了一种对退化模式进行模式分解(MD)的方法。 在图像培训和预测模式系数时,已经应用了进式神经网络(CNN) 。 四倍降价$LP11}系列已经是拆解的目标。 多种图像被视为解析变形模式的一种投入。 总共7种不同的图像, 包括全原始近地图像, 以及四个方向的线性极化后图像( 0 $circ$, 45 $circ$, 90 circ$, 135$circ 美元), 两次循环极化后图像( 右倾右手和左手) 。 模型的输出标记被选为模式系数的真和假组成部分。 总共7种最低方向的离子( RMS) 0. 018 平面图像的RMS 和平面的平面图案 。 已经用经过培训的 4 IMRIS 模型的3 和预测性能被选为 100000 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员